Introduction

Course Objectives

This course gives an introduction to basic neural
network architectures and learning rules.

Emphasis is placed on the mathematical analysis of
these networks, on methods of training them and on
their application to practical engineering problems in
such areas as pattern recognition, signal processing and
control systems.

What Will Not Be Covered A

Review of all architectures and learning rules

Implementation

— VLSI
— Optical
— Parallel Computers

Biology
Psychology

Historical Sketch

N

Pre-1940: von Hemholtz, Mach, Pavlov, etc.
— General theories of learning, vision, conditioning
— No specific mathematical models of neuron operation

1940s: Hebb, McCulloch and Pitts

— Mechanism for learning in biological neurons
— Neural-like networks can compute any arithmetic function

1950s: Rosenblatt, Widrow and Hoff

— First practical networks and learning rules

1960s: Minsky and Papert

— Demonstrated limitations of existing neural networks, new learning
algorithms are not forthcoming, some research suspended

1970s: Amari, Anderson, Fukushima, Grossberg, Kohone
— Progress continues, although at a slower pace

1980s: Grossberg, Hopfield, Kohonen, Rumelhart, etc.

L

— Important new developments cause a resurgence in the field /

Applications

N

Aerospace

— High performance aircraft autopilots, flight path simulations, aircraft
control systems, autopilot enhancements, aircraft component simulations)
aircraft component fault detectors

Automotive
— Automobile automatic guidance systems, warranty activity analyzers

Banking

— Check and other document readers, credit application evaluators

Defense

— Weapon steering, target tracking, object discrimination, facial recognition
new kinds of sensors, sonar, radar and image signal processing including
data compression, feature extraction and noise suppression, signal/imagé
identification

Electronics

— Code sequence prediction, integrated circuit chip layout, process control,
chip failure analysis, machine vision, voice synthesis, nonlinear modeli}y

(1 Applications h

e Financial

— Real estate appraisal, loan advisor, mortgage screening, corporate bond
rating, credit line use analysis, portfolio trading program, corporate
financial analysis, currency price prediction

e Manufacturing

— Manufacturing process control, product design and analysis, process ang
machine diagnosis, real-time particle identification, visual quality
Inspection systems, beer testing, welding quality analysis, paper quality
prediction, computer chip quality analysis, analysis of grinding operations
chemical product design analysis, machine maintenance analysis, project
bidding, planning and management, dynamic modeling of chemical
process systems

e Medical

— Breast cancer cell analysis, EEG and ECG analysis, prosthesis design,
optimization of transplant times, hospital expense reduction, hospital
guality improvement, emergency room test advisement

N /

Applications

Robotics
— Trajectory control, forklift robot, manipulator controllers, vision systems

Speech

— Speech recognition, speech compression, vowel classification, text to
speech synthesis

Securities
— Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications

— Image and data compression, automated information services, real-time
translation of spoken language, customer payment processing systems

Transportation
— Truck brake diagnosis systems, vehicle scheduling, routing systems

!

Biology

* Neurons respond slowly
— 103 s compared to 1Us for electrical circuits

* The brain uses massively parallel computation
—=10!" neurons in the brain
—=10* connections per neuron

Dendrites
Axon
: Cell Body
Synapse

Neuron Model
and
Network Architectures

Single-Input Neuron

Inputs General Neuron

r N A\

n

pe— S| 1yp[
lb
/1 J
a="f(wp+Dh)

Transfer Functions

0 ~piw: |0
el T
a = hardlim(n) a = hardlim(wp+ b)
Hard Limit Transfer Function Single-Input hardlim Neuron
a a

a= purelin(n) a= purelin(wp+ b)

_ Linear Transfer Function Single-Input purelin Neuron

fie]

a = logsig(n)

Log-Sigmoid Transfer Function

S

Transfer Functions

a
-b/wé 0 P
------------ _1

a = logsig(wp+ b)

Single-Input logsig Neuron

fie]

Multiple-Input Neuron

Inputs Multiple-Input Neuron Input Multiple-Input Neuron
r N A r N A
P & w, , P oW _a}
P2 ’ " a Rx1 \ N 1x1
1xR

:p3: 2 A’E_’ rngll
.pR . ViR b 1_’ b j

R 1x1 1
NN g Ryl y

a=f(Wp+b) a=f(Wp+b)
Abreviated Notation

Layer of Neurons

Inputs Layer of SNeurons

r N A\

a=f(Wp+b)

Abbreviated Notation

Input Layer of SNeurons Wi, 2 Wy, 2 - Wi R
(\ A\ W o= [Wa1Wo 2 WoR
p a . . .
x| W \ le' Ws1 Ws2 -+ Wy R
SxR n f
Sx1
1o - e
P a
R Sx1 S 1 1 1
_/ \

a=f(Wp+b)

Multilayer Network

fie]

Inputs First Layer Second Layer Third Layer
r N A\ 4 A\ 4 A\
at W 2 ne a ws e as
1 1,1|E 1} f2 1 l,llf 1> f3 1
b2, b2,
1 1
at, n2, az, ns, az,
> 72 > ¥ f3i—»
lbzz — . lb32 .
1 ’ ’ 1
al.t N2<2 a2 né3 as.3
S Z S } f2 S Z S ’ f3 S
W 252 g1 W 3g3 g2
o T
1 1
_J N\ _J N\ _J
ar=f1(Wip+b?) a2z =f2(Wz2at+h?) as = f 3(Wsa2+h3)

a3=f 3(W3f 2(W2f 1(W1p+b1)+b2)+b3)

Abreviated Notation

fie]

Hidden Layers Output Layer
Input First Layer Second Layer Third Layer
r N7 N\ N A
® p[w ib W ib W :
1 2 3
Rx1 Stx1 Fx1 S$x1
” SlxR\ nt f 1 " §XSL\ n f 2 ’ S3x82\ n® f 3 ’
Stx1 Fx1 S$x1
1P blj 1P sz 1P b3j
R S'x1 ! Fx1 o) S$x1 s
'/ AN J \C J
al=f1(Wip+b) a2 =f2(Waat+h?) as = f 3(Wsa2+h?)

a3=f 3(W3f 2(W2f 1(W1p+b1)+b2) +b3)

Delays and Integrators

jiel

Delay Integrator
e ~N 4 I
ut) a(t) u@® ~_al
—»D—>
az)) a(0)
N y g J
a(t) = u(t- 1) a(t) = u(r) du + a(0)

fie]

Initial

Condition

P

Recurrent Network

R

—/

X1

Sym. Sat. Linear Layer
s N
’SW N+ ar) a(t)
xR
j® le} Sx1 D ¢ le>
1 b
Sx1
- J

al0)=p a(t+1) =satlin(Wa(t)+b)

a(l) = satlins(Wa(0) + b) = satlins(Wp + b)

a(2) = satlins(Wa(1) + b)

An
lllustrative
Example

jEl

Apple/Banana Sorter

% 52 g% Sensors

3 Prototype Vectors
Measurement
Vector

_ _ Prototype Banana Prototype Apple
shape

P = tex_ture])
_WelghL pl = 1 p2 = 1

-1 -1

Shape: {1 : round ; -1 : eliptical}
Texture: {1 : smooth; -1 : rough}
Weight: {1:>11b.;-1:<11Ib.}

Perceptron

Inputs Sym. Hard Limit Layer

n
—
| > =

1 S

R \Sx

a= hardlims(Wp+Db)

/

3

Inputs

—/

Two-Input Case

Two-Input Neuron P2
r N A
n>0
+2 ,w
i n a
I — n<0
Wi o
I I I
1 -2
g J

a = hardlims(Wp +b)

a = hardlimg{ n = hardlims([l 2:|p+(—2))

Decision Boundary

Wp+b =0 [1é|p+(—2)20

T3

[]

97}

0
4 = hardlimsa:wl,lwl,zwl,; o +

p——— -+

\ P (apple)

Apple/Banana Example I

The decision boundary should

OO oo

p, =0

Ps The weight vector should be
A / orthogonal to the decision
boundary, and should point in tl
direction of the vector which

The bias determines the positig
of the boundary

[—10(3 p| O =10

separate the prototype vectors.

should produce an output of 1,

e

p, (banand) e /

Testing the Network

Banana:
[] -] O
. i R
a= hardllmsg:_l 0 d 1| + 00 = 1(banana
[]
[] -1 O
Apple
[] -] O
| 1 g
a = hardllmsg_l 0 a 1 +Qa = -1 (applg
[] -1 O

“Rough” Banana:

[]

a= hardlimgg:_l 0 (]

[

[]
[]
+ 07 = 1(banana
]
[]

jEl

Hamming Network

Feedforward Layer Recurrent Layer
4 N A\
p 1
17|V "\ - o n2(t+1) az(t+1) ax(t)
SxR /) — >
’ @ Sx1>/ Sx1 —P|W? Sx1 _Z Sx1 D Sx1
1 _’ b1 j SxS
R Sx1 S S
(N J J
al = purdin(W2ip+ bl a2(0)=ar axt+1) = podin(Wz2az(t))

~

3 Feedforward Layer
Feedforward Layer For Banana/AppIe Recognition
4 N
P S=2
Rx1 Wt 1 al
SXR\ 521 748x_1>
1P blj W1 = pi :[—1
R Sx1 S p'2|' 1
N J

al = purelin(W1ip+ b?)

T IR
al = Wip+b' = p1p+[3] = |PiP*3

T 3 T

P2 P2p +3

-

Recurrent Layer

Recurrent Layer

4 A

" L med) | [aeed) |a2(t)
L w——p / D

Sx1 Sx1 Sx1 Sx1

SxS
S

\ J
a2(0)=at axt+1) = podin(Wzaz(t))

1 - 1
WZ: <
[—s 1] T5-1

[
as(t+1) = poslina1 _ﬂaz(t)m = poslin
—€ 1 [

[1[I0

aq (1) — £ay(1)

ag(t) - aaf(t)

oo

10

3 Hamming Operation

First Layer

Input (Rough Banana)

1

P=1-1

-1
S (AR
O | B I (G R 2

3 Hamming Operation

Second Layer

oslind 1 —0.9|4
-05 1 |[2
dqo [
posllng?’lmz 3]
o |[Q
. o
osllna: 1 ‘O'ﬂ S]D
—0.5 1 ||0j0

_ O
posllng SJD: 3]
-1.90 [0

[-

a2(1) = poslin(WZ2a2(0)) =

I:II:II:II:II:II:II%F]D

I%pl:l

a2(2) = poslin(W2a2(1)) =

I Y

12

Initial
Condition

P

Sx1

S
—/

Hopfield Network

Recurrent Layer

A

"

™

Sx S

1P b

%

Sx1

n(t+1) a(t+1)

Vs
+ le’_/ Sx1

| a(t)
D Sx1

|

-

J

a0)=p

a(t+1) = satlins(Wa(t) +b)

13

Apple/Banana Problem

12 0 0 0
W =10 02 o[P=1009
0 0 0 0.9

a,(t+1) = satling1.2a,(t))

a,(t+1) = satling0.2a,(t) + 0.9)

az(t+ 1) = satling 0.23(t) —0.9)

Test: “Rough” Banana

1] = 1] 1l
a(0) = |—1 a(l) =|o.7 a(2) = |1/ a@g) =| 1] (Banana)
-1 -1 -1

-1 -4 /

Summary

 Perceptron
— Feedforward Network
— Linear Decision Boundary
— One Neuron for Each Decision

« Hamming Network
— Competitive Network
— First Layer — Pattern Matching (Inner Product)
— Second Layer — Competition (Winner-Take-All)
— # Neurons = # Prototype Patterns

* Hopfield Network
— Dynamic Associative Memory Network
— Network Output Converges to a Prototype Pattern
— # Neurons = # Elements in each Prototype Pattern

15

Perceptron Learning Rule

Learning Rules

« Supervised Learning

Network is provided with a set of examples
of proper network behavior (inputs/targets)

(Pt} APatd .o {Potd

- Reinforcement Learning

Network is only provided with a grade, or score,
which indicates network performance

- Unsupervised Learning

Only network inputs are available to the learning
algorithm. Network learns to categorize (cluster)
the inputs.

(~

4 Perceptron Architecture B
-W1,1W1,2 Wl,F;
Input Hard Limit Layer W = [W2,1 W22 - W R
/ \ r \ . . .
0 a _WS,].WS,Z"'WS,E
W —>
Rx 1 SXR\ 0 _I: Sx1 - -
Sx1 W, 1W
19 b N _’1 T
R Sx1 g W = WI:2 W = ZVY
'/ \ J Wi.R -
- | sV

a=hardlim(Wp+Db)

a = hardlim(n) = hardlim(iWTp+bi)

- Y

~

a = hardlim(lep+b) = hardlim(w, ,p, +w; ,p, +b)

‘B .
4 Single-Neuron Perceptron
wp1=1 wyo=1 b=-1
Inputs Two-Input Neuron
N\ N 'iz
a=1
P1 Wi ¢ /\ W
| S TRy (wip+b=0) 1 '
P2 Wi, lb
= [
/1 J
a = hardlim(Wp +b) a=0 1\

4 Decision Boundary

W'p+b =0 w'p = b

product with the weight vector.

weight vector

\A (Wip+b=0)

/

W

N

 All points on the decision boundary have the same inner

 Therefore they have the same projection onto the weight
vector, and they must lie on a line orthogonal to the

wy A
-
' =

4 OR Solution

Weight vector should be orthogonal to the decision boundary.

_ |o.
1W [05]
Pick a point on the decision boundary to find the bias.

Wp+b=[os5 03 [0] +b=025+b=0 O b=-025
0.5

N .

Multiple-Neuron Perceptron _\

Each neuron will have its own decision boundary.

iWTp+bi =0

A single neuron can classify input vectors
Into two categories.

A multi-neuron perceptron can classify
iInput vectors into 2categories.

4 .)
4 Learning Rule Test Problem | _
Pyt . {Pat3 ,...{Po I
o 1. .0 O |-, O O lol. O
I o I S B T

A Inputs No-Bias Neuron
O T o N\ e N
Py W11
. 2 o e 2
P2 W,
e}
—/ U J
a = hardlim(Wp)
_ .

Starting Point

Random initial weight:

1.0
W =
' [—o.e;|

O . W

Presenp, to the network:
a= hardlim(lWTpl) = hardlimﬁl_o _o_a I:;]E
0

a = hardlim(-0.6) = O

Incorrect Classification.

10

Tentative Learning Rule

« Set,wtop, .
— Not stable X

- Addp,to,w /

old

Tentative Rule: ift = 1anda = 0, thengw' = ;Ww° +p

new _ Id _ | 1. 1] _ |2.
—0. 2 1.2

2 A 1

o T ®

N

a = hardlim(,w'p,) = hardlimﬁz.o 1.3 [_21]%

- wpe = 29[- [2

1W

Second Input Vector

[]

a = hardlim0.4) = 1 (Incorrect Classifi

ew

Modification to Rule: 1ft = 0anda = 1, thenlwn =W

cation)

old
—P

12

4 Third Input Vector
a= hardlim(leps) = hardlimg:g_o_o_a I:—Ol]é
a= hardlim 0.8 =1 (Incorrect Classification)
2 A 1
@) T o
e oo [B

Patterns are now correctly classified.

Id
If t = a then W"°" = W°",

13

Unified Learning Rule

Id

If t =1 anda =0, thenlwneW: 1W0 +p
— - new _ old

If t =0 anda =1, then,w =W "=

If t=a, then W' "= 1WOIOI

e=1-a

new old
If e=1, then,w =W +p

new old
If e=-1, thenyw =W —-p
If e=0, thenw' =" = 1WOIOI
\
new old old
W =W +ep =W+ (t-a)p
bnew — b0|d+e
/

A bias is a
weight with
an input of 1.

!

14

Multiple-Neuron Perceptrons

To update the ith row of the weight matrix:

Matrix form:

Wnew — Wold+ epT

ne Id
b"" = %+ e

~

Apple/Banana Example

N

Training Set
0 [N I
0 O 0 O
P01 = 1]’%:[1]D [P, = 1]’t2:|:d|D
0 O 0 O
O -1 O 0 -1
Initial Weights
W = [0.5—1—o.§ b =05

a = hardlim(Wp,+b) = hardlim@o.S—l—O.g

a = hardlim(-0.5 =0

Wew = Wold+epT _ [0_5_1_()& +(l)[_]_ 1_ﬂ = [—0_5 O—l.a

First Iteration
0

[]

"W = b9+ e = 0.5+ (1) = 1.5

[]

[]

e:tl—azl—Ozl

!

16

a = hardlim(Wp,+b) = hardlim([_0.5 0 -1.
a = hardlim(2.5 =1

e=tL-a=0-1=-1

old

b = p®%+e = 1.5+(-1) = 05

4 Second lteration

T = =

+(1.5))

W = W ep’ = [g50-14+D[11-1 = [-15-1-04

17

4 Check

a = hardlim(Wp,+b) = hardlim([_1_5 -1 —O.a

a = hardlim(1.9 =1 =1t

a = hardlim(Wp,+b) = hardlim([_1_5 -1 —O.a

a = hardlim(-1.5 =0 =t,

[

+0.H5

+0.H5

18

Perceptron Rule Capabillity _\

The perceptron rule will always
converge to weights which accomplish
the desired classification, assuming that

such weights exist.

4 Perceptron Limitations

Linear Decision Boundary

1WTp+b =0

Linearly Inseparable Problems

Sighal & Weight Vector Spaces

5l

Vectors in(d".

Notation

Generalized Vectors.

5 Vector Space

1. An operation called vector addition is defined such that if
xOX andyo X thenx+yoX.

2. X+y=y+Xx

3. X+y)+z=x+(y+2)

4. There is a unique vectdo X, called the zero vector, such
thatx+0=x for all xo X.

5. For each vector there is a unigue vector in X, to be called
(-x), such thak+(-x) =0 .

5 Vector Space (Cont.)

6. An operation, called multiplication, is defined such that
for all scalarsaoF, and all vectorgoX, axoX.

7. ForanyoX, Ix=x (for scalar 1).

8. For any two scalasoF andb oF, and anyo X,
a(bx)=(ab)x .

9. (@a+b)x=ax +bx.

10.a(x+y) =ax +ay

/

~

5/ Examples (Decision Boundaries)

Is the p, p; plane a vector space?

Is the line p+2p,-2=0 a vector

Sspace?
P2
A
\— 2 W
| : : B D
2 2 >

Other Vector Spaces

Polynomials of degree 2 or less.

X = 2+t+4t2

y = 1+5t

Continuous functions in the interval [0,1].

A T

AW
™

5 Linear Independence

If
aX1+aXp+ - +aX, =0
iImplies that each
a =0
then
{X}

IS a set of linearly independent vectors.

Example (Banana and Apple) 1

1 1
P, =1 1 P, =1 1
1 1
Let
a;p1+a,pp, = 0

—ap tar -6

a; t+ar =10

—ay + (—3.2)_ _Q

This can only be true if

a; =a, =0

Therefore the vectors are independent. Y,

Spanning a Space

A subsetspansa space If every vector In
the space can be written as a linear
combination of the vectors in the
subspace.

X = xU;p+XUp+ - +X Upny

Basis Vectors

* A set of basis vectors for the spae
IS a set of vectors which spadsand is
linearly independent.

 The dimension of a vector space,
Dim(X), Is equal to the number of
vectors in the basis set.

e Let X be a finite dimensional vector
space, then every basis seXahas the
same number of elements.

5 Example

Polynomials of degree 2 or less.

Basis A:
u; =1 U, =t u3:t2

Basis B:
U; = 1-t U, = 1+t U3:1+t+t2

(Any three linearly independent vectors
In the space will work.)

How can you represent the veckor 1+2 using both basis sets?

N /

11

Inner Product / Norm

A scalar function of vectonsandy can be defined as
aninner product, (x,y), provided the following are
satisfied (for real inner products):

* (xy) =) .

* (xay,thy,) = ak.y,) + bl .y,) .

e (x,x)=0, where equality holds if=0.

A scalar function of a vector is called anorm, |||,
provided the following are satisfied:

e |K||=0.

e |K|[=0Iiffx=0.

* |lax|| =&l |k|| for scalaga .

* K+l IKI+ ¥l -

12

Example

Standard Euclidean Inner Product

Ty, —
XY = XY XY+ o + XpYy

Standard Euclidean Norm
IXI| = & , x)*

IIX|| = &KTX)V2= (X12 + X22 + +Xn2) 1/2

Angle
cos@) = x.y)/(IkITIII)

13

Orthogonality

Two vectors,y LIX are orthogonal if;y) =0 .

Example

0, < Z*_ Any vector in the pP; plane is
/ W orthogonal to the weight vector.

P,

e

/5 Gram-Schmidt Orthogonalization 1

S
Independent Vectors :: Orthogonal Vectors

yl;yZ;---;yn Vl,V2, ,Vn
\ J

Step 1: Set first orthogonal vector to first independent vector.

Vi=Y1
Step 2: Subtract the portionfthat is in the direction of;.
Vo = Yp—aVv,
Where a is chosen so thgtis orthogonal ta,:

(Vi.Vo) = (Vi,Yo—aVy) = (VYo —-a(VyVy) =0

5= Vo)

V.V
\ (V1Vi) /15

5 Gram-Schmidt (Cont.)

Projection ofy, onv,:

V.Y z)v)
(V1.V1)

Stepk: Subtract the portion gf that is in the direction of all
previousy; .

K—1
_ Vi.Yw
Vi = Y= § iy,

16

5 Example (Cont.)
Step 2.
V. = _\LYzV _ —1_[11][_;] | _ |-1| _[oH _ |-1.5
SR [2] [“]H L] [2] [oj [15]
A
Y2

5 Vector Expansion

If a vector spac& has a basis sety{ v,, ...,V },

then anyx[1X has a unique vector expansion:

5

X = zxivi = X V1 +X,Vpo+ o +x V),

n
=1

If the basis vectors amthogonal, and we
take the inner product of andx :

(VJ,X) - (VJ,Z Xivi) = z Xi(Vj,Vi) = XJ(VJ,VJ)
=1 =1

Therefore the coefficients of the expansion can be computec

g = ViX)

boovvy)

:

!

19

Column of Numbers

The vector expansion provides a meaning for
writing a vector as a column of numbers.

n
X = Z XVi = X Vi+X, Vot +x.Vy
i=1

To interpretx, we need to know what basis was used
for the expansion.

!

20

5 Reciprocal Basis Vectors

Definition of reciprocal basis vectors,

r.w)=0 I 7]
=1 |:J

where the basis vectors ang {v,, ...,V }, and
the reciprocal basis vectors are, {,, ...,r}.

For vectors iri1" we can use the following inner product:
(FiV)) =]V,

RB=I —> R'=B"

~

Therefore, the equations for the reciprocal basis vectors beco

me.

21

5 Vector Expansion

X = xVi+ XVt + XV

n

with the vector to be expanded:
(F1X) = X (F,Va) + (M, Vo) + - + X, (M, Vi)

By definition of the reciprocal basis vectors:
(FVy) = (MV3) = - =("1,Vy) =0
(FyVy =1

Therefore, the first coefficient in the expansion is:
Xy = (M X)

Xj = (I‘J,X)

N

Take the inner product of the first reciprocal basis vector

In general, we then have (even for nonorthogonal basis vecto

[S):

!

22

Example

Basis Vectors:

S).

5 Example (Cont.)

Reciprocal Basis Vectors:

b d el el
10 0.5 -0. 1 0.
Expansion Coefficients:

x‘{:rIxS:[()l]-_z]:z

Xy = [X° = [0.5—0.5, [_;] =-15

Matrix Form:

Example (Cont.)

X = (_1)Sl+232 - 2 Vl_ 15V2

The interpretation of the column of numbers

depends on the basis set used for the expansion.

25

Linear Transformations

6 Hopfield Network Questions

Initial
Condition Recurrent Layer
. [\ .
° \—b W L
Sx1 g —~N(t+1) a(t+1) a(t)
> j@ le’_//- Sx1 D Sx1
19 b 4+
S Sx1 S
—/ - J

a0)=p a(t+1) =satlins(Wa(t)+b)

 The network output is repeatedly multiplied by the weight

matrix W.
 What is the effect of this repeated operation?
« Will the output converge, go to infinity, oscillate?

* In this chapter we want to investigate matrix multiplication,

which represents a general linear transformation.

~

!

Linear Transformations

A transformation consists of three parts:

1. A set of elementX = {x;}, called the domain,
2. A set of element¥ = {y.}, called the range, and
3. Arule relating each, 0X to an element.CY.

A transformation idinear if:

1. For allx ;, X, 0X, A(X{+X,) =A(Xy) +A(X,),
2. ForallxoX,aol ,A(ax) =aA(x) .

Example - Rotation

IS rotation linear?
A A

/

a basis fol.

LetA: XY

X

~

6 Matrix Representation - (1)

Any linear transformation between two finite-dimensio
vector spaces can be represented by matrix multiplica

Let {v,,Vv,, ...,v } be a basis foK, and let {i;, u,, ...,u_} be

> XV y = > yu
i =1 i =1
AX) =Yy
0" o M
AOS xViOo= S yU;
2R 2,

nal
tion.

(6 Matrix Representation - (2) I

SinceA is a linear operator,

n

Y ANV = S yu
=1

j=1

Since theay, are a basis foy,

(The coefficients; will make
AWV = aU up the matrix representation of
=1 the transformation.)

Z Zau“ - zy.

jlll

Matrix Representation - (3)

=1 j=1 =1
monl O
> Uiy a;x-y0=0
=1 q:l U

Because the, are independent,

This is equivalent to
matrix multiplication.

djq Aqp ---

n
_ 8, Aoy -
D &% =Y :: > o

_aml Am2 ---

~

6 Summary

* A linear transformation can be represented by matrix
multiplication.

« To find the matrix which represents the transformation we
must transform each basis vector for the domain and then
expand the result in terms of the basis vectors of the range.

4)
AV = 5 aU
=1

\. W

Each of these equations gives us
one column of the matrix.

(6 Example - (1) 1

Stand a deck of playing cards on edge so that you are lookir
at the deck sideways. Draw a vecta@n the edge of the deck.
Now “skew” the deck by an angl as shown below, and note
the new vectoy = A(x). What is the matrix of this transforma-
tion in terms of the standard basis set?

X y =A(X)
/ / o

(6 Example - (2) 1

To find the matrix we need to transform each of the basis vect
AWV = aU
=1

We will use the standard basis vectors for both
the domain and the range.

2
=1

DI'S.

10

Example - (3) 1

We begin withs,:

If we draw a line on the bottom card and then skew the
deck, the line will not change.

A

A(Sy)

-
Sy

2
A(S1) = 15;+0Sp =) a;S; = ;351 +8,;5>
=1

This gives us the first column of the matrix. .

11

Example - (4)

Next, we skevs,:

% tan(0) AG,)
S

2

0

2
A(S,) = tan(8)S,+ 1S, = Y @281 = 8,81+ 8,87
i=1

This gives us the second column of the matrix.

!

12

6 Example - (5)

The matrix of the transformation is:

A [1 tar(e)]
0 1

6 Change of Basis

Consider the linear transformatidnX - Y. Let {v,, v,, ...,

a basis folX, and let {i;, u,, ...,u_} be a basis fok.

X = ZXiVi y = Zyiui
=1 =1
AX) =Y

The matrix representation is:

dq Qqp - Q%1 Y1

dpq Aoy -+ Qopl[Xo| _ | Y2

_aml Ao - amr_1 Xn Ym

AX =y

v} be

~

14

6 New Basis Sets

Now let’s consider different basis sets. L&t {,, ...,

basis forX, and let v, w,, ...,w_} be a basis fol.
X = Z Xliti y - Z yliWi
=1 =1

The new matrix representation is:

dqq Aqp - Aqpl X2 Y1
Adog 8oy - Appl Xl Z | Y2
& @ - A X Y

t}bea

15

How areA andA' related?

Expandt; in terms of the original basis vectors ¥r

Uy

| P
Li= 3tV ti = |[.?

~

16

How areA andA' related?

B, = [tl t, ... tn] X = Xt + X0, + - +X t, = BX

BW = [Wl W ... Wrr] y = ByY'

Ax =y [—> ABX =B,y

[B.'AB X =y’
> [A' = [BgleBt]]
A'X =y

Similarity
Transform

~

~

Example - (1)

Take the skewing problem described previously, and find th
new matrix representation using the basis st

A
L T t, =0.%,+S
S2 1 {, 1 SOk IR
> t,=-S:+S;
S1
0.5
t1:|:
1
- |::> 0.5- 0.5-
) B. = t.t :[ﬂ B =B :[j|
t :[_1 = [1 1 L
’ 1. (Same basis for

domain and range.y

e

Example - (2)

A= [BAB] = [2/3 2/31[1 tarﬂ] [0.5—1
—2/31/3l0 1]l1 1

A = [(273)tanB+ 1 (2/3)tanb
(-2/3)tan@ (—2/ 3)tand +

ForO =45

—2/31/3 01

19

6 Example - (3)

Try atestvector: x = [O-ﬂ o - [

1l
G s B ot | R b

A
t2 1 tl:X y:A(X)
S24
- ——
Sy

Check using reciprocal basis vectors:

Lo A Bl dkd -1 .,

Eigenvalues and Eigenvectors

Let A:X- X be a linear transformation. Those vectors
z X, which are not equal to zero, and those scalars

A which satisfy

A(z) =Nz

are called eigenvectors and eigenvalues, respectively.

]

/ for this transformation?
i ——

S1

X y=AX) Can you find an eigenvector

~

!

21

(6 Computing the Eigenvalues
Az = Az
[A-A]z=0 > IA-Al=0

Skewing example (4%
P—A 1]
0 1-A
[1—)\ 1]Z:H o1, _ o
0 1-A 0 oad = o

For this transformation there is only one eigenvector.

=0

)\2 0 A
1-— =
(1-1) S

N

L@ e o

~

.

~

Diagonalization

Perform a change of basis (similarity transformation) using

the eigenvectors as the basis vectors. If the eigenvalues are

distinct, the new matrix will be diagonal.

{z1,2,,...,z} [EIgenvectors

B = [zl Z, ... zr] |
{A. M, ..., A} Eigenvalues

A, 0 .. 0

_ Ao ...
BaBy = |2 %2 O
O 0O ...)\n

23

6 Example

A=

2)‘1
=0 A-22a=(M(A-2) =0
)\2

llj 13] Z PIA 13]2) [j
S T O
L P 2 N

Diagonal Form: A’ = [BAB] = [1/2—1/%[1 1][1 1] - [Oﬂ
172 172][1 111 [o2

- .

Supervised Hebblian Learning

(7 Hebb's Postulate 1

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells guch
that A’s efficiency, as one of the cells firing B, is increased.”

D. O. Hebb, 1949

Linear Assoclator

Inputs Linear Layer

N A

P n / a
Rx 1 W le}/ Sx1
SxR

AN >
a= purdin(Wp)

R
a=Wp a = Zwijpj
=1

Training Set:
{Pxt . {P2t}.... .{Pqtqd

Hebb Rule

Wirjlew = Wi?ld ta fi(aiq)gj(qu)
T t Presynaptic Signal

Postsynaptic Signal

Simplified Form:

new — ,,,0ld
WiimT = Wi T 08igPjq

Supervised Form:

new — ,,,0ld
Wij— " = Wi +ligPjq

Mautrix Form:
new _ old T
W = W+t p,

Batch Operation

Q

T T T T
W =1t1pg +1ops + - +1gPg = Z tqPq
qg=1
Matrix Form:
T
P1 P = [pl P2 .-
T T
W = [tl t, ... tQ:I PZ =TP
T
pQ T = [tl t2

~

(Zero Initial

Weights)

pQ]

to]

Performance Analysis

a=Wp, =

o101

Q 0 Q
S tePeP = Y ty(PgP)
=1 a qg=1

Case |, input patterns are orthogonal.
(Pgh) =1 q=k
=0 q¢ k
Therefore the network output equals the target:

a= Wp, =t,

Case I, input patterns are normalized, but not orthogonal.

a=Wp, =t + [Z tq(pgpk)}
g#k

Error

!

€ N

7 Example
Banana Apple Normalized Prototype Patterns
-1 | o5 |-0.5774 H H 0.5774 -
P =11 P,=|1 Epl =| 05774, 11 = [—1]% Epz =1 05774, 12 = [1]%
=1 -1 O -0.5774 a0 —0.5774 5

Weight Matrix (Hebb Rule):

W = TPT = [4 J|-0.57740.5774- 0.577} _
[1][0.5774 0.5774- 0.5774 [1.1548 0 §

Tests: -
~0.577
Banana Wp, = [1.1548 o}> 0.5774 = [—0.6663
—0.577
0.5774

Apple Wp, = [0 1.1548 9| 0.5774| = [0.6664

\ —0.5774 /

(7 Pseudoinverse Rule - (1) 1

Performance Indexwp, =t, q=12...Q

Q
FIW) = 5 litg=Wp,IF
q=1

Matrix Form: WP =T
r=[iity 1 P = [pr P, - P

F(W) = |IT-WPJF = |E|F

EIF =3 Ye;
i]

Pseudoinverse Rule - (2) 1

WP =T
Minimize:
F(W) = |IT-WPJF = |EIF

If an inverse exists fde, F(W) can be made zero:
W =TP!

When an inverse does not exigtV) can be minimized
using the pseudoinverse:

W =TP"

P* = (P'P) P’

Relationship to the Hebb Rule

Hebb Rule
W =TP'

Pseudoinverse Rule
W =TP"
P* = (PTP)"'P'
If the prototype patterns are orthonormal:
P'P = |

P* = (PP P =P

~

10

7 Example

I 0o [4 0 T, 1'D+
o= ol ti=[gd Bo=| 1| t=[JH w=TP*=[44d 1 1o
L] 1 0O [] [L]
0 -1 0 O -1 n N-1 -10

-1
Pt = PP P = ls 1] [—1 1—1] _ [—0.5 0.25—0.2t
13 L11-1 0.5 0.25- 0.2

P - [1][—0.5 o.zs-o.zi -Lod

0.5 0.25-0.2

W

Wp, = [10d]| 1| = [Wp,=[10d| 1 = [d

-

i)

Py

Autoassociative Memory

[

B

P,t; Pt P3,t;

= [—1 1111-11-1-1-1-111-1... 1—]]T

Inputs Sym. Hard Limit Layer

r N0

30x1

,30,\

n a T T T
[W =
W ’_I > P1P1 + P2P2 +P3P3

30x30

30

a = hardlims(Wp)

~

12

Tests

50% Occluded

B

67% Occluded
Sm mm

-

Noisy Patterns (7 pixels)

H

23+ i

/|| Variations of Hebbian Learning

old t T
+14Pq

Basic Rule: w™" =w
Learning Rate: w"" = w*%+atp;
Smoothing: W"" = W+ atgpg—yW°'? = (1-y)W° + atypg

Delta Rule: w"" = w°+a(t,-a,)p,

Unsupervised: w"" = w°“+aap;

~

14

Performance Surfaces

8 Taylor Series Expansion

F() = FOD +F ()] (x=x0)

2
+ ELF(X)

2dx2

8 Example

F(x) = e

Taylor series oF(x) about<* =0:

0

F(x) =e =¢€ —e_o(x—O) +%e‘o(x—0)2—%e_o(x—0)3+

12 13
= 1-X+=X"==X"+...
F(X) = 1-X 2x 6x

Taylor series approximations:

F(X)=Fy(x) =1

F(X)=F{(X) = 1-X

12
F(X)=F,(X) = 1-x+3X

\ 2

Plot of Approximations

8 Vector Case

F(X) = F(X{ X5, oo 1 X))

n

F(x) = F(be+iF(x)|

0
o (%, —x;5) +0_x2F(X)|

(%o =X,

X = XU X = XU

0 2
+—F(X + __F X —

1
20 xlax2

F(X)l (% = %D (%) = x,0) + -+

Gradient

0
axlF(X)

d
DF(X) = a—XZF(X)

2 (%)

0X

L 'n

Matrix Form

IjzF(X) =

F(x) = F(xD)+ O F(X)T|X:XD(X—XEb

+1(X—XEBTDZF(X)| (x=xD) +
2 .

] Hessian
aix;:(x) Oxlaazx2

axjazxf(x> %F(x)

axfaleF(X) axnaazsz(x)

—F(X) ... ——

/

8 Directional Derivatives

First derivative (slope) df(x) alongx axis: oF(x)/dx;

(ith element of gradient)

Second derivative (curvature) Bfx) alongx axis: 9°F(x)/ax’

(1,1 element of Hessian)

First derivative (slope) d¥(x) along vectop: |

.
Second derivative (curvature) IBfx) along vectop: p_LEF(X)p

lIpll 2
N

Example

F(X) = xi +2X X, + 2x§

b}l

0
—F(X)
0X 2Xq + 2X
DF(X)lX XD: al = |:2 1+4 2:|
= X1 X2
"XZF(X)
X = xU

Plots

Directional
Derivatives

8 Minima

Strong Minimum

The pointx* is a strong minimum off(X) if a scalan>0 exists,
such that(x*) < F(x* +Ax) for all Ax such thad>||Ax||>O.

Global Minimum

The pointx* is a unique global minimum &¥(x) if
F(x*) < F(x* +Ax) for all Ax#0.

Weak Minimum

The pointx* is a weak minimum oF(X) if it IS not a strong
minimum, and a scald@> 0 exists, such tha&i(x*) < F(x* + AXx)
for all Ax such thad>||Ax||>0.

N

10

Scalar Example

F(x) = 3x4—7x2—%x+ 6

Strong Maximum

Strong Minimum

Global Minimum

| | |
-1 0 1

11

il

F(X) = (x2—x1)4+8x1x2—x1+x2+3

< SOSSSSOSSISoS>

12

<=

y ===
pes

Y

Vector Example

F(X) = (xi —1.5%X X, + 2x§)xi

/8 First-Order Optimality Condition 1

F(x) = F(xU+Aax) = F(xD +OF (x)Tl DX + 1AXTDZF(X)l DX+
X = X 2 X = X
AX = X —xU
For smallAx: If Xx* is @ minimum, this implies:
F(xU+Aax) OF(xY) + DF(X)T‘ AX DF(X)T‘ AX =0
X =X" X = xU

i DF(X)TX:XDAX>O then F(xU-Ax) DF(xD)—DF(x)T‘X:XDAx <F(xD)

But this would imply thak* is not a minimum. ThereforeDF(x)T‘X) XDAx =0

Since this must be true for eveky, [DF(X)' q= O]
X =X

N

13

(8 Second-Order Condition 1

If the first-order condition is satisfied (zero gradient), then

F(xH+Ax) = F(xD + 1AXTDZF(X)l AX + -
2 X = xU

A strong minimum will exist ax* if AXTDZF(X)l AX >0 for anyAx #0.
X =X

Therefore the Hessian matrix must be positive definite. A matrsxpositive definite if:

[ZTAZ > 0] for anyz#0.

This is asufficient condition for optimality.

A necessarycondition is that the Hessian matrix be positive semidefinite. A matrix A i
positive semidefinite if:

[z2'Az>0] for anyz.

N /

14

Example

2 2
F(X) = x]+ 2X X, + 2X5 + Xy

OF(x) = [2X1+2X2+]] =0 |:> xU = I:_]J

2xl + 4x2

2F(x) = [2 2 (Not a function ok
2 in this case.)

To test the definiteness, check the eigenvalues of the Hessian. If the eigenvalug

are all greater than zero, the Hessian is positive definite.

F—A 2]
2 44—\

|o2F(x) = Al = = AN —6A+4 = (A—0.76)(A —5.24)

A =0.76 5.24 Both eigenvalues are positive, therefst®ng minimum.

15

Quadratic Functions

1

F(X) = éxTAx + de +C (SymmetricA)

Gradient and Hessian:

/Useful properties of gradients:

O(h'x) = O(x ' h) = h

Ox'Qx = Qx+Q'x = 2Qx (for symmetricQ)
\

J

Gradient of Quadratic Function:

[DF(X) - Ax +d]

Hessian of Quadratic Function:

EE

16

Eigensystem of the Hessian 1

Consider a quadratic function which has a stationary
point at the origin, and whose value there is zero.

F(X) = %XTAX

Perform a similarity transform on the Hessian matrix,
using the eigenvalues as the new basis vectors.

B = [zl Z, ... zn]

Since the Hessian matrix is symmetric, its eigenvectors

are orthogonal.

B! =g'
A\, O .0
A=[B"AB] = [0 O] A A = BABT

_O 0O ...)\rl /

17

/8 Second Directional Derivative 1

p 02F(x)p _ p'Ap
Ipl® lpl®

Represenp with respect to the eigenvectors (new basis):

p = Bc
) 2
A.C
p'Ap _ c'B'(BAB")Bc _ c'Ac _ i; -
Ipll® ¢'B'Bc c'c % 2
[

T
<P AP _,

Bl S
"l

max

18

P = Zmax C = BTp = BTZmaX =
n ,)
A.C
ZmaXTAZmaX — i:zl B = Z
max 2
enal” g2 ()

The eigenvalues represent curvature
(second derivatives) along the eigenvectors
(the principal axes).

0
0

=

Eigenvector (Largest Eigenvalue)

~

e

Circular Hollow

_ 2 > 1.7|2
") = = 5 [ij

\\\‘W’v’;?;’%
\\{\\\“m{!’%/
/4

20

Elliptical Hollow

2 2 1. 7|2 1
F(X) = X5+ XX, +X,5 = =X X
(X) 1 172 2 5 |:12:|

21

Elongated Saddle

_ 12 3 12 _1,T1T]-0.5-1.
F(X) = —le—éxlxz—zxz = EX l_15 _ij

Stationary Valley

il

+1X§:1‘XT 1 1X
2 2 -1 1

X1 = X1 %5

_ 12
2

F(x)

.

~

Quadratic Function Summary

If the eigenvalues of the Hessian matrix are all positive, the

function will have a single strong minimum.

If the eigenvalues are all negative, the function will have a
single strong maximum.

If some eigenvalues are positive and other eigenvalues are

negative, the function will have a single saddle point.

If the eigenvalues are all nonnegative, but some
eigenvalues are zero, then the function will either have a
weak minimum or will have no stationary point.

If the eigenvalues are all nonpositive, but some
eigenvalues are zero, then the function will either have a
weak maximum or will have no stationary point.

|~4

| =4

[Stationary Point; xZ=-A™'d]

!

24

Performance Optimization

Basic Optimization Algorithm

[Xk+1 = Xg+ oxPg]

or

AXk = (Xk+l_xk) = kak

Xk +1

kP
Xk

p, - Search Direction

a, - Learning Rate

Steepest Descent

Choose the next step so that the function decreases:
F(X, . 1) <F(Xp)

For small changes mwe can approximate(x):
F(X,, 1) = F(X +AX) = F(X) + g, AX,
where

O = DF(X)lx %

If we want the function to decrease:
T T
OkAXk = aOkPk <0

We can maximize the decrease by choosing:
Pk = —Gk

[Xk+1 = Xk—o‘kgk]

OF(X) =

Example

FX) = X+ 2X0 %+ 2+ %

0.
0 [o.j
0
aX1|:(x)) [2X1+2x2+l] Y
L 2X1+4X2
0X2F(X)

Xl = Xo_ago = [8

o
o= x-ag, = 09 -01]1] -

- D|=(X)|X:XO - [

0.2]
0.2

o.oj
0.0

Plot

9| Stable Learning Rates (Quadratic)

F(X) = %XTAX +d'x+c

OF(x) = Ax +d

Xk+1 = Xk—00k = Xk—a(Axg+d) —— X ,; = [l —aA]X,—ad

_—/
h'd

Stability is determined
by the eigenvalues of
this matrix.

[l —aA]z, = z,—aAzZ, = z,—aA;z, = (1-aA}))z

\V_/
(A, - eigenvalue oh) Eigenvalues
of [I - aA].
Stability Requirement:
2 2
|(1—G)\i)|<1 C(<X [a<)\max}

~

Example
] L] 1] 1]
O, = 0760, 2, [o SSIJED%)\ 5042 [OEZjHD
0 o' |-0.5240 O 7% |o.851m

2 _

T = 55y = 038

a = 0.37 a = 0.39
\ \ 2 \ \ \

Minimizing Along a Line

Choosen, to minimize F(X, +a,p,)

d
T (FO+ ap) = OF () ‘X_ kpk+o(kkaZF(x)|X “
OF(X
_ () ‘X Xk _ g-||<-pk
M F(X)lx w Pk PkAKPK
where
AkEDZF(X)l

X=Xk

Pk

9 Example

F(X) = %XTE f]x+ [1ox %= [g-j

—F(x
UR(X) = 7% o o Po=-0o = —DF(X)l i [_]
LF(X) 2Xq + 4Xo X=X, |-
_6X2 |

Plot

Successive steps are orthogonal.

-2 -1 0 1 2

d _d _ T _d
dO(kF(Xk+ukpk) = dO(kF(Xk+1) = UF(X) X:Xk+1d0(k[xk+akpk]
T T
= UF(x) Pk = G+ 1Pk

\ X =Xk+1 j

Newton’s Method

F(Xk+1) = F(Xg+AXy) = F(Xy) + QIAXk + %AXIAkAXk

Take the gradient of this second-order approximation
and set it equal to zero to find the stationary point:

Ok + AkAXk =0

11

N

OF(x) =

= [4-[

0_)(1F(X)

5o (X)

6X2

Example

F(X) = xi +2xy X, + 2x§ + X
0.
XA =
0
[Oj

3

R

_ 2X1+2X2+l 0 |X:X0 3
2X1+4X2

T0-b3-La o] -39 - 1

Plot

Non-Quadratic Example 1

F(X) = (X2_X1)4+8X1X2—X1+X2+3

Stationary Points: X = I:_O"ﬂ X = [_O-ﬁ x> = |:0-55J
0.42 0.13 0.5

F() F,(X)

el

Different Initial Conditions 1

F(X) o

| 1IN .

F(X) o

6 | P

9 Conjugate Vectors

1
F(X) = éxTAx +d'x+c

A set of vectors is mutuallgonjugate with respect to a positive
definite Hessian matriR if

PRAP; =0 k#]
One set of conjugate vectors consists of the eigenvectés of

ZIAZJ- =)\jzlzj =0 k#|]

(The eigenvectors of symmetric matrices are orthogonal.)

N /

16

For Quadratic Functions

OF(x) = Ax +d
2F(X) = A
The change in the gradient at iteratiois
AQy = Op41—-0¢ = (AX, ,,+d)—(AX +d) = AAX,

where

AXg = (X+1—Xk) = o Pk

The conjugacy conditions can be rewritten

T T T .
P AP = AX AP =Agp; =0 k#|

This does not require knowledge of the Hessian matrix.

17

9 Forming Conjugate Directions

Choose the initial search direction as the negative of the gradi

Po = Yo

Choose subsequent search directions to be conjugate.

Pk = — Ok + ByPr-1

where
T T T
AQy_19 09 AQ,_19
B, = Tklk or Bk:Tkk or B, = Tklk
AQk—1Pk-1 Ok—19 -1 Ok-19k-1

~

ent.

18

~

Conjugate Gradient algorithm

The first search direction is the negative of the gradient.
Po = Yo
Select the learning rate to minimize along the line.

HF(X ‘ T
() X = xk _ 9Py (For quadratic

a, = — = — _
=
P, DZF(X)l P, PL AP, functions.)

X = Xg

Select the next search direction using

Pk = — Ok + ByPr-1

If the algorithm has not converged, return to second step.

A quadratic function will be minimized imsteps.

!

19

9 Example

F(X) = %XTE f]x+ [1ox %= [g-j

—F(x
UR(X) = 7% o o Po=-0o = —DF(X)l i [_]
LF(X) 2Xq + 4Xo X=X, |-
_6X2 |

22[-01.[1] _[o.6
9, = OF9|,_ [ZJ__OJ+[J _[_OJ

0604 '0-64 .

T
S < 2. N7 Y

T _ 18
o
3
- —0. -3 -0.7
= _gy+ . +0.04
P1 g1+ B4Po = o 6é| [_3] [0481

[0.6-0.d _Oﬂ

0.48 _
= - L 072 5

[—0.72 0.45 [2 J [_Oojj e

el

Conjugate Gradient

Plots

—O-ﬂ ¥ 1.25{‘0-%
0. 0.48

Xo = Xy +0a4P; = !

- o

Steepest Descent

22

10

Widrow-Hoff Learning
(LMS Algorithm)

/

10 ADALINE Network e
Input Linear Neuron
N\)
a
W \ n SXl>
> | le}// a = purelin(Wp +b) = Wp +b
b %
R Sx1 g
/| _
a=purdin(Wp+b)
.Wi,l_
a; = purelin(n) = purelin(iWTp+bi) = iWTp+bi W = W!’Z
Wi Rl

Two-Input ADALINE s

[19

Inputs Two-Input Neuron P,
! e A a<0 \A a>0
- biw, ,
P1 Wy 1 " o W
AP >
p2 le <1WTp+ b: ®/
| = [
\ / \ 1 J = b/W].,l
a=purein(Wp+b)

a = purelin(n) = purelin(lep+b) = 1WTp+b

— T —
a=1W p+b =wg1pp+wy 2p2+D

10 Mean Square Error e

Training Set:
{patd . {patd ... {pPotqd

Input: Pq Target: tq

Notation:
Xz[lw] Z:H a= wp+b > a=xTz
b 1

Mean Square Error:

F(x)= E[€"] = E[(t—a)°] = E[(t—X"2)"]

10

Error Analysis o
F(x)= E[€"] = E[(t-a)°] = E[(t—XT2)"]
F(X)= E[t*=2txTz+XTzZ sz]

F(x) = E[t°] —2xTE[tz] + XTE[zZ']X

[F(X) = c—2x'h+x RX]

C = E[tz] h = E[tZ] R = E[zzT]

The mean square error for the ADALINE Network is a
guadratic function:

F(X) = c+ d'x + %XTAX

d = -2h A = 2R

10 Stationary Point Ao

Hessian Matrix:

A =2R

The correlation matriR must be at least positive semidefinite. |f
there are any zero eigenvalues, the performance index will either
have a weak minumum or else no stationary point, otherwisg
there will be a unique global minimux.

OF(X) = D%+de+%xTAXE = d+AX = —2h + 2RX

—2h+2Rx =0

If R Is positive definite:

xUJ = Rh

10

Approximate Steepest Descent—\

Approximate mean sqguare error (one sample):
F(x) = (t(k)—a(k)® = e°(k)

Approximate (stochastic) gradient:

AIF(X) = 0e(K)

_ (K _ pep2e(K)

(o000 = 55 o,

9e°(k) _ de(K)

(06" (I R+1 = 557 = 2e(W=5p~

~

10| Approximate Gradient Calculation—

de(K) _ o[t(k) —a(k)] _
oW, | ow, | an —2{t(k) — ;W' p(K) + b)]
de(k) _ @ i
OWy |) oW, | t(k)_Dlzlwl,ip.(k)+h]]
de(k) _ oe(k) _ _
aW]_,J pJ(k) ob 1

OF(x) = 0e’(k) = —2e(k)z(k)

10

LMS Algorithm

Xi41 = xk—aDF(x)|X_X
- Mk
X1 = X, + 20K Z(K)

W(k+1) = 1w(k) +2ae(k)p(k)

b(k+1) = b(K) + 2ae(k)

Multiple-Neuron Case
W(k+1) = w(k) +2ae(k)p(k)

bi(k+1) = b.(k) +2ae (k)

Matrix Form:

-
W (k+1) = W(K) + 20e(k)p (k)

b(k+1) = b(k) + 2ae(k)

10

10

Analysis of Convergence —

X, .1 = X+ 20e(K)z(K)

E[Xi+1] = E[Xy] + 2aE[e(KZ(K)]

E[X 4 = E[X] +20{ E[t(k)Z(k)] —E[(XIZ(k))Z(k)]}
E[Xk+1 = E[Xd +2a{E[t,z(K)] _E[(Z(k)ZT(k))Xk]}
E[X,,] = E[X] +2a{h—RE[X,]}

E[X, .. = [l —2aR]E[X,] +2ah
~—

For stability, the eigenvalues of thi
matrix must fall inside the unit circy

10 Conditions for Stability

leig([l —2aR])l = [1-2ar <1

(whereA, is an eigenvalue dt)
Since A >0 , 1-20\<1 .
Therefore the stability condition simplifies to

1—20()\i >_1

a< 1/)\i for alli

[O0<a<l/A.ax]

12

/10 Steady State Response ~

E[X,, . = [l —2aR]E[X,] +2ah

If the system is stable, then a steady state condition will be reached.

E[X.J = [l —2aR]E[X.J + 2ah

The solution to this equation is

E[x.J = Rh = xC

This is also the strong minimum of the performance index.

N .

10 Example
L Ho :
Banana Epl =1 1|.t1= [—1]% Apple Epz =
o L O O

R = E[PP 1= 3p1P1 + 3PPz

1
R=% 1[—11—]]+% |[11-1 =
L

€ |
10 Iteration One
1
Banana a(0)= W(0)p(0)= W(0)p,= [O 0 é' 1l= 0
-1

e(0) = t(0)—a(0)= t,—a(0)= —1-0= —1

W (1) = W(0) + 2ae(0)p ' (0)

- AT

W(1) = [0 0 d +2(0.(-D) 4 = [o.4-0.40.z]

/

W(2) = [0.4-0.40.4 +2(0.2(1.9)

L 1
= =

10 lteration Two

1

Apple a(l)= W(1)p(1)= W(1)p,= [0_4_0_40_4 1= 0.4

-1

e(1) = t(1)—a(1)= t,—a(1l)= 1—(-0.4= 1.4

T

- [0.960.16— O.i|6

16

10

lteration Three A

-1

a(2)= W(2)p(2)= W(2)p1= [0.96 0.16— 0.1]5. 1
1

= —0.64

e(2) = t(2)—a(2)= t,—a(2)= —1—(-0.64= —0.36
W(3) = W(2) +20e(2)p (2) = [1.1040 0.0160- 0.0130

W(w) = [1 0

17

-

[19

Adaptive Filtering

Tapped Delay Line

y(k) @

» Pi(K) =YK

—p Py(K) = y(k- 1)

U4—T-U<—0

5] -

—p Pr(K) = y(k- R+1)

Adaptive Filter

Inputs ADALINE
N A

y(K)

n(k) a(k)

\—_/ \ J
a(k) = purelin(Wp(Kk) + b)

R

a(k) = purelin(Wp +b) = 3 wy ;y(k=i+1)+b
i=1

18

Example: Noise Cancellation

EEG Signal Contaminated Restored Signal
(random) s t Signal e
»@ i
+
Contaminati B "Error"
onNagmlna ng Adaptively Filtered
ise)
m Noise to Cancel
Contamination
Noise Path
Filter
Graduate

Student A \

:D Adaptive
o Filter

60-Hz \
Noise Source

Adaptive Filter Adjusts to Minimize Error (and in doing

this removes 60-Hz noise from contaminated signal)

~

19

10

Noise Cancellation Adaptive Filtek\

Inputs ADALINE
N\ A

v(K) W11
n(Kk)

D Wi 2 Z > /

a(k)

/L J
a(k) = wy; V(K) +wy, (k- 1)

10

R

Correlation Matrix

R = [ZZT] h = E[tZ]

z(k) = [V(k);l
v(k—1

t(k) = s(k) + m(K)

_ [E[V(K)] E[V(k)V(k—l)]]
E[v(k-1)v(K)] E[V'(k—1)]

h = [E[(s(k)+m(k))v(k>]]
EL(s(K) + m(K)V(k—1)

21

10

Signals

v(k) = 1.2 sm%zgk%

_ . [Tk 3T
m(k) = 1.2 stT—ZD

E[v(k)]_(1332§r§”kﬂ32—(1305_072

E[V(k—=1)] = E[V*(K)] = 0.72

E[V(KV(k—1)] = %

3
Z %. 2 S|n2nkD%. 2 smzn(g 1)%

2
= (1.2) o.5cos%H = _0.36

|

0.72 -0.3
—0.36 0.72

22

10

Stationary Point

E[(s(K +m(K)v(K)] = E[S(KV(K)] + E[m(KV(K)]
g I

0

3
E[m(Qv(k)] = 3 3 3.2 sin 2% _ S0 56in20 = o5,

E[(s(K + m(K)v(k=1)] = E[s(Kv(k-1)] + E[m(Kv(k-1)]
g B

0

ori(k— 1) _
— 3 0O

h = | EL(SCR+m(K)V(K)]] . [_0.51
: —>

[(s(K) +m(K))v(k—1)] 0.7Q

-1
0= rh - [0.72 —0.3} [—0.51 _ [—0.3(1
036 0.72] Lo70] Los2

E[m(Kv(k-1)] = 3 Z 4.2 smB?nk BTUD% 2 sin - 0.70

23

10

Performance Index

F(X) = c—2X'h+x RX
¢ = E[f(K)]= E[(S(K +m(K)]
¢ = E[S(K)] + 2E[S(WmM(K)] + E[M (K)]

2 1 2 1 3[°?
E[S(] = g5 [$'ds = gos |, = 00133

c = 0.0133+ 0.72= 0.7333

F(xY) = 0.7333- 7 0.72+0.72 = 0.0133

24

LMS Response

2r Original and Restored EEG Signals

4 | | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2 EEG Signal Minus Restored Signal

1 1 1 1 1
) 1 0 1 2 0 005 01 015 02 025 03 035 04 045 05
Time

Echo Cancellation

[19

Transmission

Line

—> :
Line l l
A Adapti Adapti
] aptive aptive .
Hybrid Filter Filter Hybrid
T Transmission4 1)<
+

11

Backpropagation

11

Multilayer Perceptron

R-3-%-3 Network

/11

~

Elementary Decision Boundaries -

1

A
{f
®

f

-O- O | O

2

-

First Boundary:

a; = hardlim([_1 ¢p +0.5)

Second Boundary:

a; = hardlim([0 _1:|p +0.75)

First Subnetwork

Inputs Individual Decisions

AND Operation

N N r N
Py 1 z nl}J: i
o o 1 e, a,
$° 2 M N
0 ne al 1 -15
P2 1 z 2}J: - %
4075
1
U J J -

~

11| Elementary Decision Boundaries —
4 Third Boundary:
O ¢ a} = hardlim([1 g/p-1.5)
O ®
2 Fourth Boundary:
+ <|J> #’ a; = hardlim([p 7 p-0.29)
Second Subnetwork
Inputs Individual Decisions AND Operation
N\ N r N
P1 1 z nS}J: i 1
0 ne, a,
é— 15 Z _’J:_}
0 e, al, 1 -15
P2 1 z }J: 1
{025
A\ J N J -

[

Total Network

It
]

- O O

1 d
0 -1 bl
1 Q
.0 1
1101 b2
001

0.75

-

al = hardlim (W1p+b?)

a2 = hardlim (W2at+b?)

a3 = hardlim (W3a2+hb3)

3 3 B
W'=[14 b’=[-09
Input Initial Decisions AND Operations OR Operation
C N N N\ A\
1 2 3
2 AV - g AV 2 21T AV N3 1x1
j 4x1 J: j 2x1 —[j 1x1 J:
1-9| bt 1P| b2 1P| be
2 4x1 4 2x1 2 1x1 1
_/ U AN J _J

!

~

11| Function Approximation Example--
Input Log-Sigmoid Layer Linear Layer
N N s N) .
nt ah f =
M i3 S , (" 1+e "
by, &
p % A
nt,
wo N D — S ,
I f%(n) = n
Ut Y, N Y,
al =logsig(W1ip+b?) a2 = purelin(W2al+?)
Nominal Parameter Values
w;,; =10 w,,=10 by =-10 by = 10

[

Nominal Response

[

Parameter Variations

3 . . .
0<b;<20)| -lswp <1
A=
"/ —
1 0 1 2 B 1 0 1 2
3 . . .
“lswh ,<1) -1sb°s<1
J 1/
0 _
1 0 1 2) 1 0 1 2

11 Multilayer Network
am+1 _ fm+1(Wm+1am bm+1) m= 0.2

a = P

a=a"

11

Performance Index —

Training Set
{pPstd {pP2td{Pqtgd
Mean Square Error

F(x)= E[€"] = E[(t—a)"]

Vector Case

F(x)= E[e' e] = E[(t-a) (t-a)]

Approximate Mean Square Error (Single Sample)
F(x) = (t(k)—a(k))' (t(k) —a(k)) = e' (k)e(k)

Approximate Steepest Descent A
Witk 1) = wiit-a2= bk 1) = b~
owm |

i,] i)

11 Chain Rule S
df (n(w)) _ df(n) dn(w)
dw dn dw
Example
f(n) = cos(n) n=e" f(n(w)) = cog(e”™)
df (n(w)) _ df(n)xdn(w) — (e Wy _ o i 2W 2w
v = ~an vl (—sin(n))(2e™") = (-sin(e”))(2e)

Application to Gradient Calculation

- ~ m ~
oOF _ oF On oF _ oF o
ow; o w ob™ on™ ob"

12

11

Gradient Calculation

Sm—l
m _ m m-1 m
n. = Z W ;@ + b,
=1
on." _ on"
. — a;n 1 1 — l
ow;'| ob;"
Sensitivity
m_ OF
Sl = m
on.
Gradient
oF . m_m-1 oF _om

m |
|

aWi j ob;

13

-

[

Steepest Descent S
W' (k+1) = w"\ (k) —asa" b"(k+1) = b"(k)—as"
WMk+1) = W) —as"@" ™)' bM(k+1) = b"(k)—as™

-ﬁ-

anT

oF 9

i

OF

g,

Next Step: Compute the Sensitivities (Backpropagation

).

11

Jacobian Matrix

m+ 1 m+1 m+ 1 Dgn]
anl Onl Onl . aDZ Wir,n|+ la|m+ bim+1D
Onrln Onrzn on; on, _ 4= U _
Sm a m a m
m+1 m+1 m+1 nj nj
m+ 1 0n2 0n2 0n2
on = Onm Onm Onm m+ 1 m, m
m 1 2 ! .
on :gﬂ n W 19F () _ a1y (™
m 'y m]
anj anj
Ongy Oy 0N ™
‘m n.
ony on, on., f(ny) = —L
- s" | anj
f'(n) 0
0nm+1 m+1.=m m 0 £ Mepm
m .
Uy ey | 0 D
K 0 0

)

15

/11 Backpropagation (Sensitivities) |

A m+ lDT A - T A
g" = a_Fm — E?n —] amF+1 = Fm(nm)(Wm+l) an|1:+1
on Hon U on on

[§" = FMn™w™) st]

The sensitivities are computed by starting at the last layer, a
then propagating backwards through the network to the first la

Nnd
yer.

16

11

Initialization (Last Layer)
o 2
0) (ti—aj)
sV = £ = a(t—a)T(t—a) = igl - = —2(t-—a-)ﬁ
| anIM anIM anIM | | anIM
Oa, OaiM an(n'iV') M, M
v = = (ni)
on™ on" on”

M = 2(t—a)f ("

[M = 2F" M)t -a) }

17

11

N

" = E"nMw™ '

W (k+1) = W (k)—as (@ ")

Summary

Forward Propagation

0
a =p

Backpropagation

M = 2F" Mt -a)

m+ 1
m =

M-1,...,2,1

Weight Update

m, m—1_T

b (k+1) = b"(k)—as"

!

18

/11 Example: Function Approximatior*r—\

—» g(p) = 1+sinE£[pE
P) l e
o— \ O——
e ~ +
1-2-1 a
!
Network
§ \/

Network

Network

1-2-1

Input Log-Sigmoid Layer

Linear Layer

N ~ s ~
nYy alyy
WL, 4 Z ’L
1 a2
p %bl e
e,
wo N D — S
P
_J ¢t Yy N Yy

al =logsig(W1ip+b?)

a2 = purelin(W2al+?)

20

T N

11 Initial Conditions ya

W (0) = [:gfj b*(0) = [:8‘1‘3 W20) = [0.09-0.1] b*0) = [0.49

3

— Network Response
—— Sine Wave

11 Forward Propagation _
2’ = p=1
al = fl(WlaO+bl) _ IOgSigg_o.Zj [1] + [—0.43% _ IOgSigﬁ_oij
—0.4 —0.13[] —0.54(]
I
al = 1+e> _ I:O.SZJ
1 0.36
-1+e0.54_1

8% = f2(W23_1+b2) — pure“n([o'og_o-l}liggéi + [0.45) = [0_44a

e=t-a= i+ sina;p%—az - S+ sinaﬁ%—oma = 1.261

\ [[

. . B
/11 Transfer Function Derivatives —-

—N

1 _dpg 1 po_ e _ 1 mMm 1 no_ 1,1
f(n) = = = d- = (1-a’)(a)
an_L_I_e—rD (1+e—n)2 %- 1+e_rDD_L+e_rD

) = &) = 1

11

Backpropagation

= 2F (nA(t-a) = —2[f'2(n2):|(1.261) = —2[1(1.269 = —2.522

1 1
- |i1(n1)(W2)TSZ _ [(1-a1)(a) 0 [0.09;| [_2.525
0 (1-ay)(ay)| 0L

o [(1 —0.329(0.322) 0 8)] [o.og;l [2.523

0 (1- 0.368(0.368]|-0.1

o= [0.218 ojl—o.zzi _ [—0.049§|
0 0.233]0.429 0.0997

24

a =01

W2(1) = W2(0)-asi(ah) = [0.09—0.1}—0.1[—2.52}[0.321 0.36]3

W?(1) = [9.171-0.077b

b?(1) = b*(0)-as’® = [0.4d -0.1[2.52] = [0.73]

W) = Who)—asiad)' - [_o.zj _0_1[—0.049ﬂ 7 - [-o.zesj
—0.4 0.0997 —0.42

bl(1) = b'0)_as’ = [—o.4j _0_1[—0.0491 _ [-0.473
_ -0.1 0.0997] [-0.14

11 Weight Update W

.

Choice of Architecture

[

o(p) = 1+ sinL"

1-3-1 Network

e o e N w

' —
I
H

= o = N W

AN
" 1
‘gfl)

Choice of Network Architecture |

g(p) = 1+sin%"pg

= o [N w
.
Wan o - N w
I %

L o = N w
I g
1
1
= o - N w

Convergence S

g(p) = 1+ sin(Tp)

Generalization e

[

{Pyt} {Patd ... {Potd

N 1 s el
a(p) = 1+ sing;pA p=-2-16-12..,16,2

1-2-1 1-9-1

12

Variations
on
Backpropagation

12

Variations

e Heuristic Modifications
— Momentum
— Variable Learning Rate

« Standard Numerical Optimization
— Conjugate Gradient
— Newton’s Method (Levenberg-Marquardt)

/12 Performance Surface Example T

Network Architecture Nominal Function
Input Log-Sigmoid Layer Log-Sigmoid Layer .
N N e N
ny, ay
VVll’l Z _>_£ 0.75
o
P 1
n, 05
wo N D — S ,
o f
w_J 1t Yy N Yy
at =logsig(Wip+b?) a2 =logsig(Wzat+h?)
Parameter Values
1 1
w; ; =10 w, , = 10 bl——5 b2—5

15

1 2
Squared Error vav'; ;andw?,

10

~

‘a\‘&‘\\\ﬁ\\\ \
T

WTIRN / i
‘\‘\‘\‘\‘\‘\‘\“““\\\\\\»‘- x,,//l iy
\\\\\\\\\\\\\\}}“éff::;?;;g;,,

e

—

==

15

-15

-25
-10

<>
=52
<S> “‘

=

)

o=

<SS

=

(

|

Y

|

)
)

Z 27

/
i
0
"
(0
(0
00
000
)
U}
7227

=

T
777
7

77
-

7

171777
Z
7
@S

“
<=
“"“

=
#N'b.
R

77
&
NS
5
50
00
e

/. Squared Error vav'; ; andb*;

~

20

~

Squared Error vd', andb?,

1.4

0.7

NS <

TS
SN

=

N e ——

ST

—<=X

10 10 b21

~

-10

Convergence Example

[

15

10|

2
W 11 st

[

15

Learning Rate Too Large

10|

2
W 1,1 5r

~

mmmmmmmm

i

Filter

1

e
_ .y
1+st

£TK
1

(K

y)w
K]
60

| | ‘v‘ I

l

i

/

12 Momentum Backpropagation

15

~

Steepest Descent Backpropagation
(SDBP)

-1.T
AWM (k) = —as"@"
W2
1,1 °f

Ab"(k) = —as’

Momentum Backpropagation

(MOBP) :

AW™(K) = yaW (k= 1) — (1 —y)as"@" "Y'

Ab™(k) = yAb™(k—=1) = (1-y)as"

N

10

121 Variable Learning Rate (VLBP) 1

N

e |f the squared error (over the entire training set) increases L
more than some set percentdggfter a weight update, then

the weight update is discarded, the learning rate is multiplie
by some factor (2p>0), and the momentum coefficienis

set to zero.

o If the squared error decreases after a weight update, then t
weight update is accepted and the learning rate is multipliec
by some facton>1. If y has been previously set to zero, it is

reset to its original value.

o If the squared error increases by less thahen the weight
update is accepted, but the learning rate and the momentur
coefficient are unchanged.

Yy
d

ne

n

!

11

15

Example

0.5

10

10" 10°
Iteration Number

10

n = 1.05
p = 0.7
(= 4%

10

10" 10°
Iteration Number

10

12

/

12 Conjugate Gradient

N

1. The first search direction is steepest descent.

Po = Yo Ok = DF(X)'X:X

2. Take a step and choose the learning rate to minimize the
function along the search direction.

Xp+1 = Xt O Py

3. Select the next search direction according to:
Pk = =0k + BPk-1

where

T T T
AQ, _ 19 or By = 9k 9k or B = AQ, _ 19
T

Ag?(-—lpk—l Ok-19k-1 Ok-19k-1

Bk =

13

[

Interval Location

A F(x,+ 0,py)

8¢

4e

a;—b,
a,— b,
ds o
Ay
ds

Interval Reduction

=

A F(X,+ 0, p,) A F(x,+ a,py)
O a,
e e
a C b a C d b
(@) Interval isnot reduced. (b) Minimum must occur
between ¢ and b.

12

N

Golden Section Search

1=0.618
Set c, =a, + (11)(b,-a), F=F(c,)
d, =b, - (1t)(b,-a)), F;~F(d,)
Fork=1,2, ... repeat
If F.<F,then
Set 1 =8 ; Dy =0y 5 Ay =G
Crer = Qe T (1T)(D -2 11)
F=F., F=F(C)

else
Set ., =G by =0 ;G =0,
A1 =04y - (AT)(0O g -8 14)
F=F; F~=Fd,.;)
end

end untilb,,, - a,,, <tol

16

12

Conjugate Gradient BP (CGBP)

Intermediate Steps

Complete Trajectory

~

12

Newton’s Method

B 1
Xer1 = Xe—Ayg 0y

A = DZF(x)| ngDF(x)|

X = Xk X =Xk

If the performance index is a sum of squares function:

N
FX) = Y vi(x) = V' ()V(X)
=1
then thgth element of the gradient is

ov: (X)
OF()]; = 2 - 22 075

J

18

12

Matrix Form

The gradient can be written in matrix form:

OF(x) = 23" (X)V(X)

whered is the Jacobian matrix:

ov,(x) vy(x) Ov,(X)]

0x, ox, 0x,
0v,(X) 0v,(X) 0v,(X)
J(X) = 0X, ox, ' 0x,

0v\,(X) 0vy(X) ov,(X)
0x, ox, 0x,

19

12 Hessian
2
_ % F(X) _ . e DVI)Vi(X) 0 Vi(X)O
[O2F(X)]y 5 = 0x,0%; ZIZﬁ 0%, 0x; Yi(X) axkaij

2F(X) = 23T (X)J(X) + 2S(X)

N
S(X) = Z V. (X) 0%V (X)
i=1

20

12

Gauss-Newton Method

Approximate the Hessian matrix as:

127 (x) 023 (x)J(X)

Newton’s method becomes:

T 1.7
Xr1 = Xe—[23 (X)I (X)) 2 (X)V(X,)

= x, —[3T(x)I(x]I (x IV (x,)

21

12

Levenberg-Marquardt

Gauss-Newton approximates the Hessian by:

H=JJ

This matrix may be singular, but can be made invertible as follc

-

N

G =H+upl
If the eigenvalues and eigenvectord-oére:
(A As o A (21,25,27}
then Eigenvalues 06

—
Gz = [H+pul]lzy = Hz;+pzy = \zj +pzp = (A + 1)z

\

[xm = X, —[3T(x)Ix) + 1 13T (X)V (X, }

DWS.

22

12 Adjustment ofy,

As |, -0, LM becomes Gauss-Newton.

T 1.7
X1 = Xk_[J (Xk)J(Xk)] J (X)V (X)

As |, - o0, LM becomes Steepest Descent with small learning rate.

1.7 1
Xk+1DXk_H_kJ (XV(X,) = Xk_z—ukDF(X)

Therefore, begin with a smal], to use Gauss-Newton and speed
convergence. If a step does not yield a smé&l{g), then repeat the
step with an increasgq until F(x) is decreased:(x) must
decrease eventually, since we will be taking a very small step in the
\steepest descent direction. Y.

12| Application to Multilayer Network

N

The performance index for the multilayer network is:

Q . Q Q 9 , N
F(X) = z (tq_aq) (tq_aq) = z €4€q = z z (ej,q) = z (v;)
g=1 g=1 =1

q=1j=1
The error vector is:
.
V = [VlVZ"'VN] = [el,lez,l... eSM,lel,z... eSM,Q.l
The parameter vector is:

T _ — 1 1 1 1 1 2 M
X = [Xl X2 XI’] - |:W1,1W1,2 Wsl,Rbl bs1 Wl,l bSM]

The dimensions of the two vectors are:
M M—1+

N=Qxg n= S(R+1)+S(S'+1)+- +3(S 1)

~

!

24

12

Jacobian Matrix

J(X) =

1 1
owy ; 0wy ,

1 1
owy 1 Owj 5

1 1
ow; ; 0wy ,

1 1
Owy 1 Owq o

S, 1

aw; . ob;
OW; . abi
de de
eg'\",l esM,l
awél . ob;
OW; . abi

25

12 Computing the Jacobian

SDBP computes terms like:

) T
OF(x) _ 9€q &q
0X 0X,

using the chain rule:

- A m
oF _ oF on
- m m

aw{f‘j on.

awi, J-

where the sensitivity
m_ OF
S =—
on."

IS computed using backpropagation.

ov oe
(31}, = —_h - "kg

\ 0X 0X

For the Jacobian we need to compute terms like:

26

12

Marquardt Sensitivity

If we define a Marquardt sensitivity:

h=(q-1)S"+k

We can compute the Jacobian as follows:

weight
ov, de de, . on" on" _
[Jln) = h _ kr’nq: tr’]qx 'r’nq :éir?hx—q'r’n =§Thxa?qu
M ow an, ow o,
bias
vy _ 0e q aek,q anlmq ~m anlmq ~m
Uln 1 = 5 = =% = —m X m = Sih ™ = Si,h
X ob, on, , 0b, db.

27

12

Computing the Sensitivities

Initialization
M M
" ani'\,/'q ani'\,/'q ani'\,/'q ani'\,/'q
0 ¢M, M . _
M %—f (ni,q) fori =k
‘Mg o forizk
O
~M M, M
Sq = -F (Ng)
Backpropagation

&5 = FlnMw™ 487"

§" - [&118)- |69

~

.

12 LMBP

* Present all inputs to the network and compute the
corresponding network outputs and the errors. Compute the
sum of squared errors over all inputs.

« Compute the Jacobian matrix. Calculate the sensitivities witl

the elements of the Jacobian matrix.
e Solve to obtain the change in the weights.

 Recompute the sum of squared errors with the new weights.
this new sum of squares is smaller than that computed in st¢
1, then dividgy, by v, update the weights and go back to ster
1. If the sum of squares is not reduced, then mulfiplyy v

the backpropagation algorithm, after initializing. Augment the
iIndividual matrices into the Marquardt sensitivities. Compute

T N

N

If
23

and go back to step 3.

N /

29

[

Example LMBP Step

[

15

10t

2
W 1,1 5t

LMBP Trajectory

13

Assoclative Learning

13

Simple Associative Network

Inputs Hard Limit Neuron

(\ A\

D "\ z nlJ: a>
lb:-o.s

/1 J

a = hardlim(wp+Db)

a = hardlim(wp+ B = hardlim(wp-0.9

1, stimulus
O, no stimulus

[] [1, response
P =10 a =[] g
0 1 0, no response

~

13 Banana Associator
] !
[|
Inputs Hard Limit Neuron
Shape Sl N ~
Network Sght of banana [° & =1
¢ n a Banana?
21—
Banana? —0Tb=-05
Smell of banana p W= -
/1 J
a = hardlim(wop°+wp +Db)
Unconditioned Stimulus Conditioned Stimulus
o _ U1, shape detected _ 01, smell detected

\ P %0’ shape not detected P %O, smell not detected /

Unsupervised Hebb Rule

Wij(CI) = Wij(q_l) +0a(q) pj(CI)

Vector Form:

| W(q) = W(g-1) +aa(q)pT(q) I

Training Sequence:

P(1),p(2),p(Q)

~

13

Banana Recognition Example

a(1)

Initial Weights:
w = 1,w(0) =0

Training Sequence:

(p°(1)=0,p1)=1.,{p’(=1p2) =1 ...

a=1

w(g) = w(gq-1) +a(a)p(a)
First Iteration (sight fails):

hardlim(Wopo(l) +w(0)p(1) —0.5)
hardlim(10+0[1-0.5) = 0 (no response)

w(1) = w(0) +a(1)p(l) = 0+ 001 = 0

13

N

Example

Second lteration (sight works):

a(2) = hardlim(w’p’(2) + w(1)p(2) - 0.5)

hardlim(1t1+0[1-0.5) =1 (banana)

w(2) = w(l) +a(2)p(2) = 0+ 101 = 1

Third Iteration (sight fails):

a(3) = hardlim(w’p°(3) + w(2) p(3) — 0.5)
= hardlim(10+11-0.5 =1 (banana)

w(3) = w(2)+a(3)p(3) = 1+ 101 =2

[Banana will now be detected if either sensor wo%ks.

!

13 Problems with Hebb Rule

* Weights can become arbitrarily large

* There iIs no mechanism for weights to
decrease

13 Hebb Rule with Decay

W(q) = W(q-1)+aa(q)pT(q) -yW(q-1)

[W(q) = (1-y)W(q-1) +aa(a)p'(a)]

This keeps the weight matrix from growing without bound,
which can be demonstrated by setting ®@ndp; to 1:

wiTaX: (1—y)wirjnax+ aap;
WiTaX: (1—y)wirjnax+ a
max _ g
i Ty

13

N

Example: Banana Associator

a=1 y=0.1

First Iteration (sight fails):

a(1) = hardlim(w’p°(1) + w(0)p(1) —0.5)
= hardlim(1 0+01-0.5 = 0 (no response)

w(1) = w(0) +a(1)p(1) —0.1w(0) = 0+ 001-0.1(0) = O

Second lteration (sight works):

hardlim(w’p’(2) + w(1) p(2) - 0.5)
hardlim(1t1+0[1-0.5) =1 (banana)

a(2)

w(2) = w(l) +a(2)p(2) —0.1w(1) = 0+ 101-0.1(0) = 1

~

13 Example

Third Iteration (sight fails):

a(3) = hardlim(w’p°(3) + w(2) p(3) — 0.5)
= hardlm(1[0+1[1-0.5 =1 (banana)

w(3) = w(2) +a(3)p(3)—0.1w(3) = 1+ 101-0.1(1) = 1.9

30 T T 10

oOOO
o ©
o
o
o ©
o

201

6 max o _ 1 _
W” - V - m =10
Hebb Rule | ¢ - Hebb with Decay |

O
o
o
o
0 I I 0 I I
Q 10 20 30 0 10 20 y
10

/

~

13 Problem of Hebb with Decay

N

» Associations will decay away if stimuli are not
occasionally presented.

If a =0, then

Wij(Q) = (1—V)Wij(q— 1)

If y=0, this becomes .|

Wij(CI) = (0-9)Wij(q—1)

0

© 0
° o
o
o
o
OOOOO
OOOOOOOOOO

0

Therefore the weight decays by 10% at each iteration
where there is no stimulus.)

11

/. Instar (Recognition Network)

Inputs Hard Limit Neuron

N\ p
pl Wl,l

W n a
p.e—> > —» [—>
P Wl,R b
NN J

a = hardlim(Wp+b)

13 Instar Operation

a = hardlim(Wp +b) = hardlim(;wTp + b)

The instar will be active when
WTp=-b
or

WTp = [w]lpl cosd= b

For normalized vectors, the largest inner product occurs when
angle between the weight vector and the input vector is zero
the input vector is equal to the weight vector.

The rows of a weight matrix represent pattefns
to be recognized.
o /

the

13

[13

-

Vector Recognition

If we set
b = | wlpl
the instar will only be active whéh=0.

If we set
b > —|,wllpl
the instar will be active for a range of angles.

W

As b is increased, the more patterns there will be (over a

wider range oB) which will activate the instar. Y

14

13

N

Instar Rule

Hebb with Decay

Wij(CI) = Wij(q— 1) +aa(q) pj(CI)

Modify so that learning and forgetting will only occur
when the neuron is active - Instar Rule:

Wij(CI) = Wij(CI—l) +Gai(CI) pj(CI)—Vai(CI)Wij(CI—l)
or
Wij(Q) = Wij(q_l) +0(ai(Q)(pj(Q)_Wij(q_1))

Vector Form:

[w(q) = iW(q—l)+aai(q)(p(q)—iW(q—1))}

15

13

Graphical Representation

For the case where the instar is actee-(1):
w(q) = iw(q-1)+a(p(q)—-w(gq-1))

or
Ww(q) = (1-a)w(g—-1) +ap(q)
A
p(q)
\@ w(q)
w(g- 1)
-

For the case where the instar is inactae Q):

w(q) = iw(gq-1)

16

[13

Example
] o _ 1, orange detected visually
P = =0, orange not detected
Sght Measure shap
P = |textur
Network _weigh
¢ Inputs Hard Limit Neuron
Orange? N\ N
Sght of orange p° @ WO =3
n a Orange?
Measured shape p, _}£_>
Measured texture p, .9
Measured weight p, & W,
N N J

a = hardlim(wepo+W p +b) j

17

13 Training
W(0) = 3w (0) = [0 0
: B
P (1) =0,p(1) = |_1|5, mp°(2) = 1, p(2) = | 1|, .-
[] 1 O []
O =10 O =10

First Iteration ¢=1):

a(1) = hardlim(w’p°(1) + Wp (1) —2)

[]

-0 1| g
a(1l) = hardlim3B [0+ [0 0 (j ~11—-20=0 (no response)

[] []

0 -1 0O
o Ha1] [oF [o
W(1) = ,w(0)+a(1)(p(1)—,w(0)) = |o +0E ~1| — o% = [0
-1 Qo0 [0

T N

13 Further Training
O] C
. .00 . u U
a(2) = hardlim(wp (2) +Wp(2)-2) = hardllmEB [+ [0 od 1 —2% =1
[] -1 0O (orange)
o Ha| [d9 [+
W(2) = w(1) +a(2)(p(2) —1w(1)) = (o +1E —1| - o% = [«
of oY Qo [
0] O
. 00 .U 1 B
a(3) = hardlim(w p(3) + Wp(3)-2) = hardllm%B [D+ [1 1 _1] 1 —Za: 1
O -1f O (orange)
1] E-l- B . 1]
W(3) = wW(2) +a(3)(p(3) —wW(2)) = |-1f +1-1|—|-1{O = |-1
ol [
[Orange will now be detected if either set of sensors W})rks.

13 Kohonen Rule

1W(q) =w(q—-1) +a(p(a) —aw(q-1)), foriX(q)

Learning occurs when the neuron’s index a member of
the setX(q). We will see in Chapter 14 that this can be used
to train all neurons in a given neighborhood.

20

~

Outstar (Recall Network)
Symmetric Saturating
Input Linear Layer
N\)
n, Q
> —>
n, a,
> —>
Ng ds
> —>
—/ \ J
a = satlins(Wp)

13

Outstar Operation

N

Suppose we want the outstar to recall a certain patern
whenever the inpyt=1 is presented to the network. Let

W = aU

Then, wherp=1
a = satling Wp) = satlins(a“) = al

and the pattern is correctly recalled.

The columns of a weight matrix represent pattefns
to be recalled.

22

\
13 Outstar Rule

For the instar rule we made the weight decay term of the Hebb
rule proportional to theutput of the network. For the outstar
rule we make the weight decay term proportional taripat of
the network.

Wij(Q) = Wij(q_l) +aa(q) pj(Q) _ij(Q)Wij(q_l)

If we make the decay rateequal to the learning rate

w; (0) = w;(q—1) +a(a(a) —w;(q—1))p;(a)

Vector Form:

[wj(q) = w;(g-1)+a(a(q) -w;j (q-1))p;(a) }

Example - Pineapple Recall 1

[13

Symmetric Saturating

Inputs Linear Layer
‘ ‘1 r n A a, Recalled shape
Measured shape p: o=t > > —>

Measured texture p, e wt, =1

Measured weight p; a, Recalled texture

Wi, = N,
> —PS >
Wi, .
| n a, Recalled weight
|dentified Pineapple p2 s
W, 2
—_/ N J

a = satlins(Wopo+Wp)

/13 Definitions

a = satling W’p° + Wp)

10

0
: W =lo1
00

Sgnt Measure
Network o | shape . -1
pineapple _
P = |textur P = |1
Measurements?

_ 01, ifapineapple can be seen

b= EO, otherwise

.

13

lteration 1

[]

O 0 OO 4
o 0O o
(1) = |o|, P(1) =10, P (2) = [-1]. P(2) =
[O O
0 Q 00 |1
a=1
ol oo o
a(1) = satlinsp| + [o]10 = |o| (no response)
L]
00l [O 1O

w,(1) = wy(0) +(a(l) -w,(0))p(1) =

o o o
+
111
=) o,
|

o O O

I:II:IE\I:II:I

26

Wy(3) = Wy (2) +(a(2) -w4(2))p(2) =

I 0] (]

-1 g-Y |- 1
-1 +E—1 - —1E1 = 1-1
1 Y Laio |1

13 Convergence
3-1 [0 g |~
a(2) = satlinsfj_q| +|ol10 = |-1| (measurements given)
L]
A1l 10 L1
of g-1 |od |-t
W1(2) = Wy(1) +(a(2) -w1(1))p(2) = o[+ H-12| —|o|tL = |1
[[]
O gl Qg L1
do| |-1f 5 [«
a(3) = satlinsp| + [-1]10 = |—1| (measurements recalled)
[] [
49 Lo L4

27

14

Competitive Networks

Hamming Network

Feedforward Layer Recurrent Layer
4 N N
—{w: (t+1) (t+1) (t)
o1 n2(t+ az(t+ a2(t
SxR\

ni al
/
@le»/ Sx1 P W2 Sx1 ’_Z Sx1 D 5x1>
1_> b1 j SxS
R Sx1 S S

- J U J
al = purein(W1ip+ bl a2(0)=at at+1) = podlin(Wzax(t))

/

1P, P2, ...

W p{
w1l = ZWT = p;—
wl o [pd)

a' = Wlp+b? =

R
bt = [R

R

pip+R
pip+R

P&P+R

~

14 Layer 1 (Correlation)

We want the network to recognize the following prototype vectt
P

The first layer weight matrix and bias vector are given by:

The response of the first layer is:

The prototype
closest to the
iInput vector produces

DI'S.

the largest response.

!

/14 Layer 2 (Competition) i\

The second layer is
a®(0) = a' initialized with the output
of the first layer.

a’(t+1) = poslin(W2a%(t))

WSZDI’ ifi = | 0<£<L
[1—€, otherwise S-1

5 Mo 2 1] The neuron with the
a;(t+1) = posling (t) —E_Z a; ()5 largest initial condition
)=l will win the competiton.

N /

/

14 Competitive Layer
Input Competitive Layer
r N A
-1WT- -1WTp
P n a wT wTp
=P W s Crs? n=Wp =" Ip = [
SxR]
wT WTp
R S -)
/ \ J
a = compet (Wp)
a = compein
01,i=il L
a; _Eo,iiim niDZn,,Dl

chos.e1

chos.e2

chosﬂS

iU<i, On; = ng

!

14

Competitive Learning

Instar Rule
Ww(q) = ;w(qg-1)+aa(q)(p(g) —;w(g-1))

For the competitive network, the winning neuron has an
ouput of 1, and the other neurons have an output of 0.

Kohonen Rule

w(a) = ;w(a-1) +a(p(a) —;w(a-1))

w(a) = (1-a),w(q—1)+ap(q)

w(q) = w(g-1) i#i0

14

Graphical Representation

P()
. w(Q)

w(qg- 1)

av(a) = w(g-1) +a(p(q) —;wv(a-1))

Ww(a) = (1-a),w(g—1) +ap(q)

~

Example

A
P4
®

() o W(0)
— o
P3 Py

-QP-

P2

Four lterations

A
P4
&

w(0) L w(0)
’/O W) K‘
/ I (1)
FW(3) /

Ps P1
/,'® W(2)
&

P2

14| Typical Convergence (Clustering)

® Weights
X Input Vectors

Before Training

After Training

~

/

14 Dead Units

One problem with competitive learning is that neurons

with initial weights far from any input vector may never win.

Dead Unit

&

SR ’
"L
©

~

Solution: Add a negative bias to each neuron, and increase the

magnitude of the bias as the neuron wins. This will make it harder
_ to win if a neuron has won often. This is called a “conscienﬁq.”

11

/

14

Stability

~

If the input vectors don’t fall into nice clusters, then for large

learning rates the presentation of each input vector may modify
configuration so that the system will undergo continual evolutic

the
ON.

~

14 Competitive Layers in Biology

On-Center/Off-Surround Connections for Competition

Weights in the competitive layer of the Hamming network:

1, ifi =]

L.
T e, ifi#]

Weights assigned based on distance:

neuron |

260006 01 ifd =0
" =0 ¢ itd >0
0 "

13

[14

Mexican-Hat Function

Wij neuron j

cyojeyere

N /\ OO®O®0
-, 0OBD®O
;//\\‘ OO0
@006

[14

ONONONONC
® @0 @
o {ohe
® @@ @
@ @6 0 6
_ Nis(1)

N
N.,3(2) ={3,7,89 11 12 13 14 15 17 18 19 23

Feature Maps

Ww(qg) = (1-a)w(g—-1) +ap(q)

N;(d) = {j’di,j < d}

15(1) = {8,12 13 14 1B

Update weight vectors in a neighborhood of the winning neur
w(a) = w(q-1)+a(p(q)—;w(q-1))

| N, (d)

~

15

Example

Input Feature Map Feature Map
C N A\ 4 A

OXOXORORC)

0 n . cjojelole

LWV [C o> O®O WO

253 @

. - clelelole
_/ \ J _)

a = compet (Wp)

Convergence

14

\anut

Learning Vector Quantization

Input Competitive Layer

Linear Layer

r N N 7 A
a2
D Nl al n2 82x1|
Rx1 Wr S’Lxl| C S“Lxl> W2 Fx1
SIxR Fxst
R St
_/ \ J J
n|1: - ”in' p” a2z = Wzaal

al = compet (n?)

The net input is not computed by taking an inner product of the
prototype vectors with the input. Instead, the net input is the
negative of the distance between the prototype vectors and the

~

a)

-

!

18

~

14 Subclass

For the LVQ network, the winning neuron in the first layer
iIndicates thesubclasswhich the input vector belongs to. There

may be several different neurons (subclasses) which make up

each class.

The second layer of the LVQ network combines subclasses i
a single class. The columns\WF represent subclasses, and th
rows represent classé&'? has a single 1 in each column, with

the other elements set to zero. The row in which the 1 occurs

iIndicates which class the appropriate subclass belongs to.

(Wﬁ,i = 1) 0 subclass is a part of clask

Nto

o)

—

.

/
14 Example
, 10110
W"=1p1000
00001

e Subclasses 1, 3 and 4 belong to class 1.
» Subclass 2 belongs to class 2.

e Subclasses 5 and 6 belong to class 3.

A single-layer competitive network can create convex

N

classification regions. The second layer of the LVQ network cal
combine the convex regions to create more complex categories.

L

JJ

!

20

14 LVQ Learning i\

LVQ learning combines competive learning with supervision,
It requires a training set of examples of proper network behavior.

{Py U} P2 T3 AP U

If the input pattern is classified correctly, then move the winnjing
weight toward the input vector according to the Kohonen rule.

(@) = W (a-1) +a(p(@) — W (A-1)) ap=tg=1

If the input pattern is classified incorrectly, then move the
winning weight away from the input vector.

wha) = whg-1)—a(p(a) - W (g-1)) ag=1#t =0

s

1
(W) -
] 0.25 0.7
wko) = | _lo.75 0.7
(Wl)T 1 0.2
3 05 0.2
1.T
(W) |

14

a

a = compe

1

First Iteration

[- 1
O—lW — P4
L 1
W~ py
= compet(n’) = compet 2
1
g—lsW —Pg
4 1
[-_4W _pl_
qd . - a7l@
3-llo.25 0.7% [0 1 “E
1 '0750733T—-01-T“E E
g 't = = |0 = compet:
d |r T - q72 .
1-1[1.00 0.25 -[o0 4 ||o .
d . B
4-[0.50 0.2% —[0 1 “%

N

—0.354
—0.791

-1.25
—0.90]

N |

oo o !

23

14 Second Layer

1
azzwzalzllloiO =[

0011|0

0

toward the input vector.

W) = W(0) + a(p, — W' (0))

o[oofl-BE - b

This Is the correct class, therefore the weight vector is moved

|

Figure

P3

W)

w2

()

25

14

Final Decision Regions

é P1 P3
IW() 3W(e)
P4 P2

) @-»
AW() W H(e)

114 LVQ2 1

If the winning neuron in the hidden layer incorrectly classifies the
current input, we move its weight vector away from the input
vector, as before. However, we also adjust the weights of the
closest neuron to the input vector that does classify it properly
The weights for this second neuron should be moved toward the
iInput vector.

When the network correctly classifies an input vector, the weights
of only one neuron are moved toward the input vector. However,
If the input vector is incorrectly classified, the weights of two
neurons are updated, one weight vector is moved away from the
Input vector, and the other one is moved toward the input vector.
The resulting algorithm is calldd/Q?2.

N .

[14

LVQ?2 Example

P1 P3
AN £
\@ A (©)
W)
w2
\
Wi2) 1
10 o 3W (O)
w(0)
P4 4 P>
Q-

15

Grossberg Network

Biological Motivation: Vision

Eyeball and Retina

~

~

15 Layers of Retina

The retina is a part of the brain that covers the back inner
wall of the eye and consists of three layers of neurons:

Outer Layer:
Photoreceptors - convert light into electrical signals
Rods - allow us to see in dim light
Cones - fine detail and color
Middle Layer
Bipolar Cells - link photoreceptors to third layer
Horizontal Cells - link receptors with bipolar cells
Amacrine Cells - link bipolar cells with ganglion cells
Final Layer
Ganglion Cells - link retina to brain through optic nerve

!

Visual Pathway

N | steral
Pri mary Geniculate

Visual Nucleus
Cortex

. n
/15 Photograph of the Retina
Blind Spot (Optic Disk)
Vein
Fovea
o .

/. Imperfections in Retinal Uptake

—

Stabilized
Images Fade

~

Compensatory Processing

[15

Emergent Segmentation
Complete missing boundaries.

Featural Filling-In :
Fill in color and brightness.

. . - - Before Processing

% After Processing

Emergent Segmentation Featural Filling-in

-

15 Visual lllusions

¢ NI
“o JIN

lllusions demostrate the compensatory processing of the
visual system. Here we see a bright white triangle and a
circle which do not actually exist in the figures.

Vision Normalization

Variable Separate
[llumination Constant [[lumination

O
\ O
_/Cm O X X X

The vision systems normalize scenes so that we are only
aware of relative differences in brightness, not absolute
brightness.

N /

Brightness Contrast

[15

If you look at a point between the two circles, the small
iInner circle on the left will appear lighter than the small
Inner circle on the right, although they have the same

brightness. It is relatively lighter than its surroundings.

Intensities.

The visual system normalizes the scene. We see relative

!

10

Leaky Integrator

(Building block for basic nonlinear model.)

29D = (o) + p(y

Leaky Integrator

4 N

+ n n
p_>2_>us+|]>-r>

- J

11

15

Leaky Integrator Response

—t/ €

t _(t—
n(t) - e (t—1)/¢

1
n(0) +Ejoe p(t—T)dt

For a constant input and zero initial conditions:

1

0.75f

0.51

0.25F

~

12

[15

Input Basic Shunting Model

Shunting Model

Y4 A
b* +
p* *N—
Excitatory) bt ——
Input A n
1/8—}|]>—r0—}
| O ta— n@)
] + b —_
P
Inhibitory 2:_
Input b
AN J
edn/dt=-n+ (b*- n)p*- (n+b)p

Gain Control Gain Control
\ (Sets upper limit{Sets lower limit)

15

Shunting Model Response

a% = —n(t) + (b+—n(t))p+—(n(t) +b)p

b"=1 b =0 e=1 p =0

Upper limit will be 1, and lower limit will be O.

0.75F

0.5F

0.25F

1

1 0.75¢

©
1
|
©
1
ol

0.5

1 0.25

14

Grossberg Network

Layer 1 Layer 2
(Retina) (Visual Cortex)
Inbut /\ /\
P O O
O O <
O O
O LTM O
O (Adaptive Weights) \O
\—/ \—/
Normalization Contrast
Enhancement

LTM - Long Term Memory (Network Weights)
STM - Short Term Memory (Network Outputs)

15

Input

Layer 1

Layer 1

N

Slxl‘

<]
Stxst

S

—/ \©

edni/dt =

-nl+ (+b1_

n)[*W1ip- (nt+ by ["W1i]p

15 Operation of Layer 1
1
e = _n'+ (b -n') 'Wp-(n'm + bHrwp
Excitatory Input _ _
['Wp ‘wh= 010
:o 0 :1
Inhibitory Input] _ >
[Wp wh=|10 1
110

N Normalizes the input while maintaining relative intensities

On-Center/
Off-Surround
Connection
Pattern

/

/

15 Analysis of Normalization
Neuroni response:
dn ()
gt = _nil(t)+(+b1_ni1(t))pi—ni1(t)j; J
At steady state: »
1 1 1 1 n; = illi
0=-n+(Cb -n)p-nY p |:: > ! s'
iZi J 1+ Z of
. L . =1
Define relative intensity:
s
— P
Pi=% where P= > p
=1
Steady state neuron activity
+ .1 s s + 1 +, 1
n,1 = %ﬁ E,Eﬁ. Total activity Z n- Z PDpJ Bﬁ';%g b

J = =

18

15

Layer 1 Example

dni(t)
(0.D—= = —ny(®) + (1-ny®) Py — Ny b,
dny(t))) .
(0.1) dt = —ny(t) + (1—nx(t)) po, — N5(t) p;

0.75F

0.51

0.25F

1

1
1 n
n2 2
4 075}
2 Ny 0, = |10
= 1 0 2 =
P1 [8 40
1 1
nl 1 025 nl
0.05 01 0.15 02 % 0.05 01 0.15

0.2

19

15

~

Characteristics of Layer 1

The network is sensitive to relative intensities of the input
pattern, rather than absolute intensities.

The output of Layer 1 is a normalized version of the input
pattern.

The on-center/off-surround connection pattern and the
nonlinear gain control of the shunting model produce the
normalization effect.

The operation of Layer 1 explains the brightness constang
and brightness contrast characteristics of the human visueé
system.

!

20

Layer 2

Layer 2
e I
+ _* On-Center
—» W24 TWad—
Pxsl é< +b%: P
al +w + N2 n2 a2
S BB
S _ i
+
D4 £ s
+
b2
Off-Surround W24
" Fx L Y

edn2/dt = - n2+ (*b2- n2){[*W2]f2(n2) + W2a1}
\ - (n2+ b3 "W f2(n?)

15 Layer 2 Operation

2
S0 = 0%+ (b n’0) "W n’w) + Wa

~-(n’® + D) WIF W)
Excitatory Input:

(WA nm) + Wa')

‘W? = "W' (On-center connections)

W (Adaptive weights)
Inhibitory Input:
(WA (n°®)

wo = wh (Off-surround connections)

22

15 Layer 2 Example
e =01 b2 = H b2 = lo] f2(n) _ 1O(n)22 w2 =
1 Q 1+ (n)

W)’

_ [0.9 o.ﬂs
0.45 0.

Correlation between
prototype 1 and input.

dni(t) 2 o 02 2 /—;\:D 2 2 2
0D = —nl(t)+(1—n1(t))5f (n(1) + (W) a%—nl(t)f (ny(1))
Correlation between
prototype 2 and input.
dng(t) 2 2, 02 2 /‘ZATTD
(0.1) ol —nz(t)+(1—n2(t))gf (ny(1) + (LW) a

0- na() FAn2(t)) -

(2W2)T.

2

15

N

1

Layer 2 Response

0.75f

al = I:Oj 0.5
0.

0.25F

Input to neuron 1:

(W) a' = [o.g 043[04

2. T 1
(W) a na(t)
T
(,w?) a'
Contrast
Enhancement
and
n2(t) Storage
t
Input to neuron 2:
2. T 1
0.54 (LW)a = [0 45 OQ{OJ = 0.81

24

~

/

15 Characteristics of Layer 2

e As inthe Hamming and Kohonen networks, the inputs to
Layer 2 are the inner products between the prototype
patterns (rows of the weight mati¥?) and the output of
Layer 1 (normalized input pattern).

 The nonlinear feedback enables the network to store the
output pattern (pattern remains after input is removed).

* The on-center/off-surround connection pattern causes
contrast enhancement (large inputs are maintained, while
small inputs are attenuated).

!

25

Oriented Receptive Field 1

¢

When an oriented receptive field is used, instead of an on-center/off-surround
receptive field, the emergent segmentation problem can be understood.

[15

Active
)
. !

|nactive

Active

Choice of Transfer Function

[15

Stored Pattern
f2(n) n2(co) Comments
Linear Perfect storage
of any pattern,
but amplifies
> noise.
Slower than
n2(0) Linear Amplifies noise,
! ‘ S~ T reduces contrast.
‘ [l”[> -
i Faster than :
Linear Wi nner-takea_\l [,
SUPPresses Noise,
T guantizes total
» | activity.
Sigmoid Supresses
noise, contrast
T/ ‘ I ‘[enhances, not
> guantized.

15

Adaptive Weights

Hebb Rule with Decay

dw’ (t)
— 5 = af-w 0 + O n;)
Instar Rule
(Gated Learning)
dw? ()
L2 = and(g-w? () + o) <

Vector Instar Rule

d[;w ()]
dt

= an’®{-[W] +n'©}

Learn when
n4(t) is active.

28

15

Example

dw’ (1)

LI = nfOf-wi, 40 +ny(t)}
dWi A0) 2 2 1

d’t = Ny —wy Ht) + ny(t)}
de 1(0) 2 2 1

d,t = nz(t){ — Wy 1(t) + nl(t)}
dw; A(t)

22 = nyO{—wj, o) + (0}

29

/

151 Response of Adaptive Weights

n

n

N

Two different input patterns are alternately presented to the

network for periods of 0.2 seconds at a time.

1

For Pattern 1:

2
1 _ [0_9; n2 _ I:]i 0.75F W1, 1(t) Wg 1(t)
0.4 0

i 2
0.5 W]_, Z(t)

For Pattern 2:

1 = |:0'4ﬂ n2 = I:Ojl 0.25
0.9 1 % w5)

O 1 1 1 1 1
0 0.5 1 15 2 2.5

The first row of the weight matrix is updated whgf{(t) is active, and
the second row of the weight matrix is updated whg) is active.

~

!

30

15

Relation to Kohonen Law

Grossberg Learning (Continuous-Time)

d[, W (t)]

T any{-[W O] +n’(o}

Euler Approximation for the Derivative

AW ()] Wt + At — w()
dat At

Discrete-Time Approximation to Grossberg Learning

W+ A = WD) + a(A)nin{ - wt) + n'(v}

31

15

Relation to Kohonen Law

Rearrange Terms

Wt +AL = {1—a@tniO} W (D) + a(A)n’B{n o)

Assume Winner-Take-All Competition

WE+AY = {1-a} WO +{a'n(®) where o = a(At)nt)

Compare to Kohonen Rule

Ww(a) = (1-a),w(g—1) +ap(q)

32

16

Adaptive Resonance Theory
(ART)

Basic ART Architecture

Layer 1 Layer 2

Gain Control

%‘2

&

Orienting
Subsystem

Input

QO QO QO

Reset

(30680

16

ART Subsystems

Layer 1
Normalization
Comparison of input pattern and expectation

L1-L2 Connections (Instars)
Perform clustering operation.
Each row of W2 is a prototype pattern.

Layer 2
Competition, contrast enhancement

L2-L1 Connections (Outstars)
Expectation
Perform pattern recall.
Each column of \W! is a prototype pattern

Orienting Subsystem
Causes a reset when expectation does not match input
Disables current winning neuron

-

[19

Layer 1
Input Layer 1
N .. A
> < Expectation Waile a2

D + + N1 Nl —| at
é—»g—» e »[DT~>*—>
Stx1))

+
S S
D4 ol
_bl

- 4 a2
Gain Control wWH
SIx

__J U .

ednydt =- nt+ (*b1- n){p+W21a3 - (nt+ -by["W1az

16 Layer 1 Operation

Shunting Model

1
A0 = _n) + (b -n'm){p + W0} —(n') + DY W%
~— —
Excitatory Input Inhibitory Input

(Comparison with Expectation) (Gain Control)

a' = hardlim *(n%)

hardlim*(n) = 5 = 170
00, n<O0

~

16 Excitatory Input to Layer 1

D+ W2:1a2(t)

Suppose that neurgnn Layer 2 has won the competition:

0
2:1.2 21 2:1 2: 2: 0 2:1
wZa? = [Wl- w5 ...Wj-l...wsf]; = W™ (jth column oW?2?)
1

Therefore the excitatory input is the sum of the input pattern
and the L2-L1 expectation:

2:1 2 2:1
p+W Ta = p+w,

!

16 Inhibitory Input to Layer 1

Gain Control

W a%(t)

11...1

The gain control will be one when Layer 2 is active (one

iInactive (all neurons having zero output).

N

~

neuron has won the competition), and zero when Layer 2 is

!

16

Steady State Analysis: Case |

dn
dt

Sy
—ni1+(+bl—ni1)§pi zw,zjl JZD (ni + b)z a’

Case I: Layer 2 inactive (eaeq = 0)

dn b
e = - + (b =n){p}

In steady state:

1 1 1 1 +1 1 b™p
0=-n +(b —n)p; = —(1+p)n, +'b P — > Ny = I

Therefore, if Layer 2 is inactive:

G

~

16/ Steady State Analysis: Case ||

Case II: Layer 2 active (oreg, = 1)

dn + ("ot 2 +b
et = - + (b —n){p+ w3 —(nf + b)

In steady state:

~

2:1

:_(1+p|+W “+1)ng +(b(p,+W,J)—b) | 2% Pt W]

We want Layer 1 to combine the input vector with the expectation from
Layer 2, using a logical AND operation:
n%<0, if eitherw??;; or p; is equal to zero. bi(2)-b'>0) , ¥

! | > b (2) >
nt>0, if bothwz-li,j or p, are equal to one. B _pl<o /

L [alzpmw?:l]

0=—n+(b —n){p.+w ~(nj +b") ;b (prw) -
|:> n =

bl

Therefore, if Layer 2 is active, and the biases satisfy these cond

!

itions

Layer 1 Summary

If Layer 2 is inactive (eac#?; = 0)

a =p

If Layer 2 is active (one? = 1)

‘ alzpmwjz:JL I

T 16 Layer 1 Example |
e=1,*bl=1 andbl=1.5 W = [é ﬂ P = [(1)]

Assume that Layer 2 is active, and neuron 2 won the competition.

1
dny 1 1 2: 1
(O.l)a = —ny+(1-n){py+wy 4 —-(n;+1.9 \\ dni .
1 1 1 1 dt
= —nt+(1-nb){0+ 1 —(nt+1.9 = -3n-05 /
dn; 1 1 2:1 1
(O'l)ﬁ = =Ny +(1-ny){ p, + W53 —(n;+1.5) \\ dnk)
d_t2 = —40n,+5

= —ny+(1-mp){1+ 3 —(ny+15) = —4ny+05 J

N e

16

-0.2
0

Example Response

0.2

0.2

Layer 2
-
N * On-Center
—> W24 WA
Fx sl é{ +bzg<+ PxL
] o
al + + N2 N2
1/e
+

Reset

N

Off-Surround

W2 d—

e dnz/dt = - n2+ (*bz- n){[*W2f2(n2) + Wr2a)

- (02 + D)W ()

a2

13

16 Layer 2 Operation

Shunting Model

2
2010 = n’y
On-Center Adaptive
Feedback Instars

|+ (o -’} WA’ (m) + WAl
SN— -~

N

Excitatory
Input

Off-Surround
Feedback
N~

—(n?(t) + PHIWAF2 %)

~— I
N7

Inhibitory
Input

!

14

16 Layer 2 Example
ccox vl wof] 0w @] fosod
1 1 (WIZZ)T 1 O
[\ 2 .
2, _ ho(n)?, n=0 (Faster than linear,
) = %1 0 n<o Winner-take-all)
dni(t N 2T 10
=% = —niy + (1= @) () + (1w1'2)Ta1%—(ni(t) +1) £ (ng()
dng(t) 5 o o2 2 1:2.T] 2 2, 2
(0.9—5 = = + (L=mE)TF50) + W) a G- (n + 1 (o)

!

15

Example Response

-0.5F

| | |
0 0.05 0.1 0.15 0.2

Layer 2 Summary

(W™ a' = max(w'™ a)

otherwise

o
1
-
o

16 Orienting Subsystem
Orienting Subsystem
(A
+b0 N
P —»[*wi—» *34—
1xSt _
+ - Nno no — ao
1/8—>|]>—T—0—>_i_—>
Reset
—» 2<—+ 1
al 'WO-}
1xSt “ho +
g J

\LZ-Ll expectationd!) and the input patterm).

e dno/dt =- no+ (*ho - nO)[TWO]p - (no + “bo)["Wo] al

Purpose: Determine if there is a sufficient match between the

!

18

/16 Orienting Subsystem Operation I

0
S = =0 + (- n’O) W - (00 + D) Woa)

f—/ f_/
Excitatory Input 7
+, ,,0 S 2
(» W= [ua...u]p:O(ij :0(||p||
j:

1

Inhibitory Input

S
C_. W' = [BB .. fla' =B Y ak() = pla'l’
| =1

J =

When the excitatory input is larger than the inhibitory input,

the Orienting Subsystem will be driven on.

N /

19

16

Steady State Operation

1%
[
= —(1+alp|®+ B"al" 2) n’ + "b°(alpl?) —'bO(B"al" 2)

0 = —r®+ (= n®%{alpl3 —(no+'bo)EB"a

o _ "o alpl A _elall?
(1+alpl?+plall?

Let b = b =1
B I
n >0 f 5 <E =P
Ipl ~_ .
— Vigilance
N RESET)

", areset will occur when there is enough of a

mismatch betweep and w;™ .

Sincea' = pnw

~

20

16

(0.2)

Orienting Subsystem Example

£=0.1,0=3,=4 (= 0.75) p:[ﬂ alz[cll

0
00 =) + (1-n°)3(py + Pl — (00 + {4(a + a3)}
dn’(t) _ 0
——d—jl_'— = —110n (t)+ 20
n°(t)

~

21

16

Orienting Subsystem Summary.

it/ 1p1% <]
otherwise

0

Q
1
I I
o P

~

16| Learning Laws: L1-L2 and L2-L1

Layer 2

.

Layer 1
* Gain Control
Input

Q Expectation

O /
—» O

O

O

Reset

_ y(30680)

&

Orienting
Subsystem

~

The ART1 network has two

separate learning laws: one for the

L1-L2 connections (instars) and
one for the L2-L1 connections
(outstars).

Both sets of connections are

updated at the same time - when
the input and the expectation hav
an adequate match.

The process of matching, and
subsequent adaptation is referreg
as resonance.

e

| to

!

23

€ . N
16 Subset/Superset Dilemma
| S 1 1
Suppose that W** = E 1 ﬂ so the prototypes ar@™° = |1| w'° = |1
Q) 1]

We say thatw!? is a subset ofw'?, becausgw'? has a 1 wherevew'? has a 1.

1
If the output of layer 1 is a' = 1 then the input to Layer 2 will be
Q
1.2.1 1 2
A % g
11 0 2

Both prototype vectors have the same inner productakjttven though the
first prototype is identical ta* and the second prototype is not. This is calledl

Kthe Subset/Supersdilemma. /

24

16 Subset/Superset Solution

Normalize the prototype patterns.

o

V\/1:2 —

Wik NI

Wik NI
1

1:2 1

Wik NI

(WI = (@)

O P
|

1 1

WIN

Wik NI~

Now we have the desired result; the first prototype has the largest inner

product with the input.

~

!

25

16 L1-L2 Learning Law

Instar Learning with Competition

1:2
df;w(t)] ; 1 ; S
——= = g O b —w O CWIa (O —{w 1) + o} [Wla (1) .
where
-1- -O- -10--- O- -01--- 1-
| 1] | 0 | 00 1] 111 0_
K\r‘/ K\r‘/ \\/‘/ \\/
Upper Limit Lower Limit On-Center Off-Surround
Bias Bias Connections Connections

When neuron of Layer 2 is activew:?is moved in the direction e. The
elements ofw!? compete, and therefom:? is normalized.

26

16 Fast Learning

1:2
dw; ;(t) _
dt

= a7 (0] (L-w)28 0 -w s ()]
Forfast learningwe assume that the outputs of Layer 1 and Layer 2 remain
constant until the weights reach steady state.

Assume thad?(t) = 1, and solve for the steady state weight:
0= [(1—wﬁ:j2)Zaj1—wi:j2 a&]
KZ]
Case lal =1

N\
0= (1-w Z)Z i ("al —-1) ——(Z+Ia| —1) "‘Z Wil._zz ¢
W j W]> v Z+"8.1|2—1
Case ll:a'y =0 Summary
A (" .)
0= —Wi:JZIalHZ pow =0 w2 ¢@
| 2+ |at?-1

_) A,

27

16 Learning Law: L2-L1

Outstar

2:1
diw; (t :
- 2w + a'(o)

Fast Learning

Assume thad?(t) = 1, and solve for the steady state weight:
0=-w'+a or wi'=a'

|

modified to incorporate the current input pattem.

N

Columnj of W21 converges to the output of Layer 1, which is a combination of
the input pattern and the previous prototype pattern. The prototype pattern is

.

16

ART1 Algorithm Summary

0)

1)

2)

3)

~

All elements of the initialv2-1 matrix are set to 1. All elements of the
initial W12 matrix are set t@/((+S-1).
Input pattern is presented. Since Layer 2 is not active,

al = p

The input to Layer 2 is computed, and the neuron with the largest inp
activated. 2T 1 2T 1
if((w"9 a' = ma{ (w3 a’)

otherwise

a2 _ |:| 1 y
[% O ’
]
In case of a tie, the neuron with the smallest index is the winner.
The L2-L1 expectation is computed.

W2:1a2 — Wj2:1

ut Is

29

16

Summary Continued

4)

&)

6)

7)

8)

N

Layer 1 output is adjusted to include the L2-L1 expectation.

a' = pn WJ-Z:l

The orienting subsystem determines match between the expectation
the input pattern.

o1, itlalIpP<el
% 0, otherwise

If 2° = 1, then sed? = O, inhibit it until resonance, and return to Step 1.
a® = 0, then continue with Step 7.

Resonance has occured. UpdatejrofwW?12,

1

le:Z _ Z? :
¢+ [at?-1
Update columi of W24,
W2:1 — a1

and

Remove input, restore inhibited neurons, and return to Step 1. /

30

If

Stability

Recurrent Networks

7

Nonlinear Recurrent Network

a A

a a
g >
—>

a(0)

- J
da(t)/dt = g(a(t),p(t).t)

/17 Types of Stability 1

A ball bearing, with dissipative friction, in a gravity field:

\!/ Asymptotically Stable

S Stable in the Sense of Lyapunav

/_\ Unstable

17 Basins of Attraction
Case A Large Basin of Attraction
Case B
O Complex Region of Attraction
P

In the Hopfield network we want the prototype patterns to be
stable points with large basins of attraction. Y

17 Lyapunov Stability

d _
o a0 = g(a().p(). 1)

Eqilibrium Point:
An equilibrium point is a poire* whereda/dt=0.

Stability (in the sense of Lyapunov):

The origin is a stable equilibrium point if for any given
valuee >0 there exists a numbéfe) >0 such that if §0)||<9d,
then the resulting motioa(t) , satisfies {(t)||<e for t>0.

—e

17 Asymptotic Stability

d _
o a0 = g(a().p(). 1)

Asymptotic Stability:

The origin is an asymptotically stable equilibrium point if
there exists a numbér-0 such that if §(0)||<d , then the resulting
motion,a(t) , satisfies §(t)|| - 0 ast - oo.

N/

/

17 Definite Functions

Positive Definite:
A scalar functiorV/(a) is positive definite iV(0)=0 and

V(a)>0 foraz0.

Positive Semidefinite:
A scalar functiorV/(a) is positive semidefinite ¥(0)=0

andV(a)=0 for all a.

/17 Lyapunov Stability Theorem I

da
i g(a)

Theorem 1Lyapunov Stability Theorem

If a positive definite functioW(a) can be found such that
dV(a)/dt is negative semidefinite, then the origa¥) is stable for
the above system. If a positive definite functifa) can be found
such thad\(a)/dt is negative definite, then the origii<0) is
asymptotically stable. In each ca¥€q) is called a Lyapunov
function of the system.

17 Pendulum Example
|
0 2
m mleS+cg—te+mgsin(6) =0
mg

State Variable Model

da
a; =0 al=az
a :d_e d_azz_gsin(a)_ia
2 dt dt I 7 ml 2

17 Equilibrium Point
Check: a=0
j—?l =a, =0
%"2 = —Igsin(al)—mila2 = —Igsin(O)—mil(O) =0

Therefore the origin is an equilibrium point.

10

17

N

Lyapunov Function (Energy)

1

~

V(@) = zml*(ay)’ + mgl(1-cos(a,)) (Positive Definite)

Kinetic Potential
Energy Energy

Check the derivative of the Lyapunov function:

3 (a) = [oveaa(e) = Sl LR

V(a) = (mglsm(ai))a2+(m| a2) sm(al)——laa%

SV(@) = —cl(a,)’< 0

The derivative is negative semidefinite, which proves that thi

origin is stable in the sense of Lyapunov (at least).

—

!

11

A\
VARG
NN

0
7

9

9

7

V2%

V = (9.8)2E(a2)2 +(1- cos(al))]

7

/

4

/

17 Numerical Example
g=98 m=1 1=98 ¢=1.96
?1 - % %312 = —sin(a;) —0.2a,

dVv _ 2
prile —(19.209(a,)

7

2t W |
1L | 160
oy 1 120
1k |
V e
2+t]
40
-10 -5 0 5 10
2
0

Pendulum Response

_ |1
a(0) = Lj

a,

/17 Definitions (Lasalle’s Theorem) I

Lyapunov Function

Let V(a) be a continuously differentiable function frdn®
to . If Gis any subset dfi", we say thaV¥ is a Lyapunov
function onG for the systenda/dt = g(a) if

™Ma) - (ov(a) g(a)

does not change sign @h

Set/

Z = {a: dV(a)/dt =0, ain the closure o}

N /

14

/17 Definitions 1

Invariant Set
A set of points ii]" is invariant with respect ta/dt=g(a)

If every solution ofda/dt=g(a) starting in that set remains in the set
for all time.

SetL

L is defined as the largest invariant sef.in

/

17 | asalle’s Invariance Theorem

Theorem 2L asalle’s Invariance Theorem

solutiona(t) that remains 116 for all t>0 approachek® =L [1{ o}
ast - . (G Is a basin of attraction for L, which has all of the

stable points.) If all trajectories are bounded, t@gn- L as
{ — oo,

Corollary 1:Lasalle’s Corollary
Let G be a component (one connected subset) of

Q, ={a V(a) <n}.
Assume tha6 is boundeddV/(a)/dt < 0 on the sef, and let the

IS In its region of attraction.

N

If V is a Lyapunov function o@ for da/dt=g(a), then each

~

set
*=closureL G) be a subset @. ThenL® is an attractor, anG

!

16

17 Pendulum Example
Q,00= {a V(a) < 100} G = One component @@, ,

/

17

Invariant and Attractor Sets

Z = {a: dV(a)/dt=0, ainthe closure oz} = {a: a, = 0, ain the closure o5}

2\/W\

L ={a:.a=0

~

17 LargerG Set

G = Q4= {a V(a) < 300}

VAVAVAN
™o {a a,=

-z\AA/

-10 10

N

L

2

1

0

-1

-2

°=L={a a, =+nm a, = 0}

VAVAVAN

~

-10

AVAVAVA

For this choice o6 we can say little
about where the trajectorywill converge.

10

e

~

Pendulum Trajectory

/VV@\
WAVAYS

-10

0

~

17 Comments

We wantG to be as large as possible, because that will indicate
the region of attraction. However, we want to chods® that the
setZ, which will contain the attractor set, is as small as possible.

V = 0 is a Lyapunov function for all ai", but it gives no
iInformation sinceZ = ",

If VV; andV, are Lyapunov functions 0@, anddV,/dt anddV,/dt
have the same sign, theh+ V, is also a Lyapunov function, and
Z=72,nZ, If Zis smaller thaz, or Z,, thenV is a “better”
Lyapunov function than eithé&f; or V.. V is always at least as
good as eithe¥, or V..

.

18

Hopfield Network

Inverting
Output

[18

Amplifier

j;

Resistor

Hopfield Model

=
N

ls
R s
fL \l\\l\
T T . T
® "
. \l\\l\ *
o Ry1 o

18

Equations of Operation

an(3 (
at = 2 T ‘n?(i) *l
J =

C

n, - input voltage to theh amplifier

a - output voltage of theh amplifier

C - amplifier input capacitance

- fixed input current to thgh amplifier

18

Network Format

dn(ty >
RC—— = Z RT, () —ni® + R,
j=1
Define:
€ = RiC Wi,j = RiTi,j bi = Rili
dn(t) >
j=1

Vector Form:

s% — _n(t) + Wa(t) + b

a(t) = f(n(v)

Hopfield Network

[18

Input Recurrent Layer

) 4 A\
P
Sx1 b W \ + n n a

SXS 1/e _p f —o—Pp
j Sx1 Sx1
19 b
S Sx1 f_]_ S
—_/ . J

n(0) =f*(p), (a(0)=p) edn/dt=-n+Wf(n)+b

-

T .
18 Lyapunov Function

s Lh %
V(a) = -za'Wa+ i ;Eg f_l(u)dulé—bTa

18

Individual Derivatives

First Term:
dd 1t U _ 17T Tda _ Tda _ _T,,,da
dtg_éa Wa% = —ZD[a Wa] eril [Wa] g - 2@ Wdt
Second Term:
b [[k [
dOr O d O, - Odg 5, dg da
dtg([f](“)d‘% - daiD'([f](“)d“Edt = fa)g = ng
0 0 0 0
) | -
dls Ealf‘l()du% = rda
at| 2 WS T at
i =10
0 il
Third Term:
d T _ T Tc_lg _ Tc_lg
dt{_b a = -0bal dt b dt

18

Complete Lyapunov Derivative

d B d_@ Tda Td_g_ T T, da
FV(@) = aWdt at -b [—aW+n b]dt

From the system equations we know:

T
[—aTW + nT—bT] = —€ [%]

So the derivative can be written:

d ___[dn@)7"da > findan AN dan
dtv(a) - [dt] dt _gz Leit N _Ez [Lge U

[]
=3
1]

SN
z @I

If d%i[f‘l(aoho then v@=<o

~

18 Invariant Sets

Z = {a: dV(a)/dt =0, ain the closure o5}

S 2
dyiay = o = 0d et rdan
dtV(a) - gizlljjai[f (ai)]Dﬂjt]

This will be zero only if the neuron outputs are not changing;
d.___a j— O

dt

Therefore, the system energy is not changing only at the
equilibrium points of the circuit. Thus, all pointsdrare
potential attractors:

18

Example
= :2 s ALLE — é 1t
a= f(n) tan 050 n yntan@z%
Ri,=Ry; =1 5
W = .
T10,=T,,=1
e=RC=1
y =14

18 Example Lyapunov Function

S .
V(a) = —%aTWa+ z ET]'1‘ (u)du] b a
=15 0

—a'Wa = —[a, az][é][] _a,a,

zf—l(u)du = \%::[)tan%%du = %[—Iog[cos%%]ﬂj = —Iog[cos@aﬂ]

y Tt

4 U U o
V(a) = —a,a,———=llogrco —a%ﬂoggco —aa%]
1 1.41'[2[O 2 0 2

18

Example Network Equations

% =-n+Wfh) = -n+Wa

a, = gtan_lglm—';'nnlg

—

~

0.5

-0.5

0.5

y
a

V

. y

O
7
’::':',{':'

)
7,
7
7
2
’
i?’
4
(7
f
9
0
Y
4
0
4
)
W
\
W)
\
\
W
N
\
\

1’
/
/ /
i
0
f
0
{
‘3"3
)
W
\
\
\
N
N
\
\
N

0
97
W 7
o
i
4947
' 1 17
il
i
fimt
i
i
.::: ’:"':“
o
g
\\ \\\
N N
N \
\\ \
\\

7
i
]
il
s‘.'g%g
i
000.
Wl
Wi
‘000.
“‘Q‘.
o
A
-\-~
\\\\\
\N\\N
W
\A:s

0
/
4
)
4
4
4
()
i
4
§
\
§
\
\
\
\
N
AW
\

{
‘
)
)
\
\
\
\
\

g
4
f
0
00
()

)
0
{0
¢
0
0
i
\
\

\
N
N
N
\

0.5

7

77/ 7

}sg%ggg%%éggggfaé%;
5777 Z

",

13

Time Response

V(a)

18

Convergence to a Saddle Point

1

0.5f

-05 f

0.5

~

18 Hopfield Attractors

The potential attractors of the Hopfield network satisfy:

da _
a-{_o

How are these points related to the minim&@)? The
minima must satisfy:

T
Ov =[OV 0V oV | -
aal 0a2 aas

Where the Lyapunov function is given by:

s O O
' [

V(a) = —%aTWa+ > %J'f_l(u)d@—bTa
=1 5

16

18 Hopfield Attractors
Using previous results, we can show that:
OV(a) = [-Wa+n-Db] = = %]

Theith element of the gradient is therefore:

3 oo dn g o s Aty 3
a_aiv(a) = —e— = e S (1)) =-¢; ai[1‘ (@&)] 57

Since the transfer function and its inverse are monotonic

increasing: di[f(a)] >0
a

All points for which 9—3%9 =0 will also satisfyov(a) = 0

Therefore all attractors will be stationary points/¢d).

!

17

Effect of Gain

18 Lyapunov Function

D
V(a) = aTWa+ Z ET]'f (u)du1 b'a W = y—ta”gzug
_/
E If Ywdu = £ IogE:o dTa'DD] ———Iog[cosg;%]

215

19

18

High Gain Lyapunov Function

Asy - oo the Lyapunov function reduces to:

v(a) = —:—ZLaTWa—bTa

The high gain Lyapunov function is quadratic:

V(a) = —%aTWa—bTa = %aTAa+dTa+c

where

f2v@ =A=-W d=-b c=0

20

~

Example
2 =W = 0 -1 2 Al = A -1 =)\2_ = (A A —
2v(a) g |02v(a) =l N 1=MA+1)(A-1)
A= -1 21:1 A, =1 22:_1

-1 -0.5 0 0.5 1

18 Hopfield Design

The Hopfield network will minimize the following
Lyapunov function:

v(a) = —:—ZLaTWa—bTa

Choose the weight matri%/ and the bias vectdr so that
V takes on the form of a function you want to minimize.

22

18

Content-Addressable Memory

Content-Addressable Memory - retrieves stored memories

on the basis of part of the contents.
Prototype Patterns:
{P1 P2 P (bipolar vectors)

Proposed Performance Index:

Q
Ja) =5 3 (Ipd'a)
g=1

For orthogonal prototypes, if we evaluate the performanc

Index at a prototype:
Q
WP =53 (pgd Py’ = 50p1"p)” = -5
g=1

J(a) will be largest wheia is not close to any prototype
pattern, and smallest whans equal to a prototype patt

~

ern

)

23

~

18 Hebb Rule
If we use the supervised Hebb rule to compute the weight mat
Q T
W = pq(pq) b=20
qg=1

the Lyapunov function will be:

Q Q
1 1 1
V(a) = a Wa = —gaT[S pq(pq)T]a =5 Y a'pq(py) 2
= q-= 1

q=1

This can be rewritten:

Q
_ 1 T 12 _
V(a) = 5 Z [((Py) @ = J(a)
q=1

Therefore the Lyapunov function is equal to our performance

iIndex for the content addressable memory. Y

rix:

24

18 Hebb Rule Analysis
Q T
W = Z Pq(Pq)

If we apply prototypep; to the network:
Q . .
Wp; = Z Pe(Py) P; = P;(Pj) P; = P,
qg=1

Therefore each prototype is an eigenvector, and they have
a common eigenvalue & The eigenspace for the eigenvalue
A=Sis therefore:

| =4

X = spaf Py, P2, ... PG

An S-dimensional space of all vectors which can be written as
linear combinations of the prototype vectors. Y

N

25

/18 Weight Matrix Eigenspace I

The entire input space can be divided into two disjoint sets:
R° = XO X’

whereX" is the orthogonal complementXf For vectors
a in the orthogonal complement we have:

(py)'a=0,9=12...,Q

Therefore,
Q Q

Wa = 3 pypy'a= Y (p) =0=0rn
qg=1 qg=1

The eigenvalues &V areSand 0O, with corresponding
eigenspaces of andX". For the Hessian matrix

02v = -W

N the eigenvalues ar&and 0, with the same eigenspaces.

!

26

~

18 Lyapunov Surface

The high-gain Lyapunov function is a quadratic function.
Therefore, the eigenvalues of the Hessian matrix determine its
shape. Because the first eigenvalue is nega¥ivall have
negative curvature iX. Because the second eigenvalue is
zero,V will have zero curvature iK".

Because/ has negative curvature X, the trajectories of the
Hopfield network will tend to fall into the corners of the
hypercube &:-1<a <1} that are contained IX.

Example

aT|:1 1
11

= —}aTWa - 2

Vv(a)

1]]
11

1
1

il
-
ST
I
5
I
G
&
[

0.5F

~

18 Zero Diagonal Elements

We can zero the diagonal elements of the weight matrix:
W' = W —Ql

The prototypes remain eigenvectors of this new matrix, but fthe
corresponding eigenvalue is noQ):

W'pq = [W_Ql]pq = Spq_qu = (S_ Q)pq

The elements oX" also remain eigenvectors of this new
matrix, with a corresponding eigenvalue d@)-

W'a = [W-Ql]a = 0-Qa = -Qa
The Lyapunov surface will have negative curvatur¥ and

positive curvature iiX" , in contrast with the original Lyapungv
function, which had negative curvature{rand zero curvature

in X,
/29

18

If the initial condition falls exactly on the lirg=-a,, and the
weight matrixW is used, then the network output will remain
constant. If the initial condition falls exactly on the lme-a,,
and the weight matri¥V’ is used, then the network output will

\converge to the saddle point at the origin.

!

30

	Introduction
	Neuron Model and Network Architectures
	An Illustrative Example
	Perceptron Learning Rule
	Signal & Weight Vector Spaces
	Linear Transformations
	Supervised Hebbian Learning
	Performance Surfaces
	Performance Optimization
	Widrow-Hoff Learning (LMS Algorithm)
	Backpropagation
	Variations on Backpropagation
	Associative Learning
	Competitive Networks
	Grossberg Network
	Adaptive Resonance Theory (ART)
	Stability
	Hopfield Network

