
PROCESSING OF UNDERSAMPLED BLADE SIGNALS
Miroslav BALDA 1

Abstract: The paper deals with a method of processing samples of
instantaneous positions of tips of blades of a turbine wheel when passing
along a sensor attached to the stator of the turbine. The signals are
highly undersampled, since the natural frequencies of blades are much
higher than the sampling frequency. The paper reveals the way of signal
reconstruction based on the a priory knowledge of the blade natural
frequencies.
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1. INTRODUCTION

Much effort has been devoted to ensure a total reliability of nuclear power plants.
The reliability of of the plant requires the reliability of its single parts as well. This
is the reason, why the attention has been paid also for a vibration of individual parts
of turbosets, blades included. For the purpose, special monitoring systems have been
designed. The new systems are based on the exact time measurements (see [ 1, 2 ]). The
clock pulses of the high frequency (10-100 MHz) are counted and the content of the
counter is recorded in a moment, when a blade tip is passing the sensor fixed to the
stator. The resulting sequence of times should be processed into deflections from the
equilibrium position, and those into stresses in critical points of a structure. In case the
dynamic stresses overcome certain level, the danger of fatigue damage of blading becomes
real. The monitoring system should give a message on it to the control room of the
machine.

2. FOURIER ANALYSIS OF SAMPLED SIGNALS

Sampling the signal h(t) of blade tip deflections by a sampling frequency fs = 1/T ,
where T is the sampling period, corresponds to the multiplication of h(t) by the Dirac
comb

δ
T
(t) =

∞∑

k=−∞
δ(t−kT ), (1)

which is a periodic series of Dirac pulses shifted mutually by T in time. The operation
generates a time series

h
T
(t) = h(t) δ

T
(t) =

∞∑

k=−∞
h(kT ) δ(t−kT ), (2)
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Since the Fourier transform (FT) of the Dirac comb

F {h
T
(t) =

1

T
δ1

T

(f) } (3)

is a (scaled) Dicac comb in the frequency domain with the repetition period fs = 1/T ,
the Fourier transform of the sampled signal is

F {h
T
(t) } =

∫ ∞

−∞
h(t) δ

T
(t) e−i2πft dt =

∫ ∞

−∞
h(t)

∞∑

n=−∞
δ(t−nT ) e−i2πft dt

=
1

T
H(f) ∗ δ1

T

(f) = H1
T

(f)

(4)

It is a convolution of the Fourier transform of the original function h(t) with the Dirac
comb in the frequency domain. It is seen from the equation (3) that the Fourier trans-
form of the sampled signal is an infinite sum of all copies of Fourier transforms shifted
by multiples of sampling frequency fs. In order to avoid the interference of the side fre-
quency bands, the sampling frequency fs should be chosen at least as a double the highest
frequency fh in the signal,

fs ≥ 2 fh (5)

The formula (5) expresses the well known Shannon sampling theorem.

The convolution brings very serious problems, if the signal is undersampled, what
means, if its highest frequency contained in the signal is higher than half the sampling
frequency fs = 1/T . The frequency components are then shifted to another frequencies,
what is called ,,aliasing” or ,,folding”. The phenomenon is well demonstrated in the figure.

...................................
f

............
....................... |H(f)|

»»»»»»»»»»»»

XXXXXXXXXXXX.........
.........
.........
.........
.........
.........
.........
.........
.........
...
...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

-fs 0 fs-f
N

f
N

-2fs 2fs-fn fn

a

...................................
f

............
....................... |H̊(f)|

−3fs −2fs 2fs 3fs-fs 0 fs-f
N

f
N

»»»»»»»»»»»»

»»»»»»»»»»»»

»»»»»»»»»»»»

»»»»»»»»»»»»

»»»»»»»»»»»»

»»»»»»»»

»»

XXXXXX
XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXX

XX

»»»»»»
������������

XXXXXXXXXXXX.........
.........
.........
.........
.........
.........
.........
.........
.........
...
...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

b

...................................
f

............
....................... |H̊(f)|

...................... ......................................................................................................................................................................................

.............................
.............................

............................................................................................................

................................................................................
.............................................................................................................................

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

.........

.........

.........

.........

.........

.........

.........

.........

.........

...

...............................................
......

-f
N

0 f
N

fa

c

Figure 1: Aliasing due to the low sampling frequency

The low sampling frequency fs caused a repetition of the original FT (in Fig.1a) into side
bands (Fig. 1b) and a summing contributions of all bands into the basic frequency band
(-f

N
, f

N
)) (in Fig 1c), where f

N
= fs/2 is so called Nyquist frequency.



The individual frequency components fn are moved to another ones, aliased fre-
quencies fa, which may be evaluated as

fa = fn − fs round

(
fn

fs

)
(6)
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Figure 2: Aliased frequency fa as a function of a sampling frequency fs

The figure shows as an example how the sampling frequency influences the aliased fre-
quency under the fixed actual frequency fn = 127 Hz.

3. RECONSTRUCTION OF THE VIBRATING BLADE SIGNALS

It is well known that a signal may not be reconstructed until the sampling frequency
does not fulfill the sampling theorem. This fact would disable any attempts to estimate
a fatigue life of the rotating blades, the signals of which are expressively undersampled,
because of no knowledge of the real signal, the peaks of which are determining a speed
of fatigue damage cumulation. Fortunately, there is a way at hand, how to support an
estimating of the residual life of blades.

The system under observation, a turbine wheel with blades, is well known from
the preoperation investigations during iys development. This means that the resonance
frequencies f̂n of rotating blades are known in forward from the numerical and experimen-
tal analyses. The rotational speed and the number of sensors in the stator for measuring
blades determine the sampling frequency. Hence, the estimates of aliased frequencies
f̂a corresponding the resonant frequencies of blades in the Fourier transform of slowly
sampled signals will be

f̂a = f̂n − fs round

(
f̂n

fs

)
(7)

Looking through the Fourier transform, one may find peaks of its modules on the frequen-
cies fa close to the f̂a. Those may be recalculated using formula (6) onto the frequencies
fn, which are the real resonance frequencies during the observation. Taking the peak
value and next nb frequency components close to it from both sides, and transferring
them into a new Fourier spectrum Hk

T
(f) of the appropriate frequency width kfs, one get



a reconstructed Fourier transform of the original signal as if it were sampled by by a k
multiple of the real sampling frequency fs. If the contents of the aliased FT after picking
up the resonance bands is not virtually empty, one may decide, how to spread the rest of
spectra onto the frequency interval of the reconstructed Fourier transform Hkfs(f). The
reconstructed signal, which aproximates the original one of the blade, is obtained by the
inverse Fourier transform of the reconstructed Fourier spectrum Hkfs(f):

hT/k = F−1{Hkfs(f) } (8)

The signal may be used for any further analysis of peaks and a damage of the material
of the blades.

4. MEASUREMENTS AND DATA PROCESSING

The above mentioned method of a vibrating blade signal reconstruction has been
used for processing both simulated and real measurements. Every measurement consists
of a series of clock counts, say, 100 samples per every blade, complemented by 100 clock
counts of the fixed marker (datum) attached to the rotor.
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Figure 3: Measured signals of vibrating blades and datum

Should the rotational speed were constant, and the blades were stiff, the counts would
create a sequence of numbers with a constant step, a linear function. After removing
the linear trend from the real data, the resulting series will carry an information on time
differences from the equilibrium, which correspond the attitudes of the blade tip from



the equilibrium. The measurement taken under real conditions brings another problem
associated with a nonstationarity of the speed during the measurement. This phenomena
is seen on the Figure 3a. The thick line is the collection of signals taken from all blades.
the averaged signal out of them is drawn by the thin line shifted by 50 counts higher. The
line with high peaks correspond to the datum signal. The 3-D plot of one measurement
is given in Fig. 3b. Fig 3c gives the view of efective signals of all blades after removing
the nonstationarity.

As soon as the nonstationarity is removed, the arbitrary blade signal may be
processed in the above mentioned way.
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Figure 4: Slowly sampled signal, its FT, reconstructed FT, and reconstructed signal

5. CONCLUSIONS

The method presented in this contribution proved to be useful for processing the
slowly sampled signals, of blade deflections, say once per revolution, by the diagnostic
equipment. In spite of that the reconstruction is not unique, it gives very acceptable
results based on the dynamic properties of the blades. The reconstructed signals may be
used for estimating a fatigue damage generated in the material of blades, as well as for
more reliable forcast of their residual fatigue lives.

The method evaluates approximate time series of all blade tips deflections. It is a
problem of dynamic analysis of the blade to recalculate it into time series of stresses in



critical points of the blade. Should the stresses be mostly uniaxial, they may be processed
by the multichannel version of the rain-flow method for decomposition of complex time
series into the closed cycles. In case of multiaxial stressing, the problem of fatigue damage
estimation is more complicated, because there is no unique approach developed yet in the
world.
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time series supplied by PhD Procházka. Also the support of this work by the Grant Agency
of the Czech Republic in the form of the project No. 101/97/0226 and 101/99/0103 is
acknowledged with pleasure.

6. REFERENCES

[1] Gloger M., Jung M.: Non-Contact Blade Vibration Information System BeSSI. Pro-
ceedings CISM/IFToMM Symp. Diagnostics of Rotating Machines in Power Plants,
Udine, Italy, Springer, 1993, pp. 149-165
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