

19. konference s mezinárodní účastí

VÝPOČTOVÁ MECHANIKA 2003 COMPUTATIONAL MECHANICS 2003

Nečtiny, 3. – 5. listopad 2003

APLIKACE ENERGETICKÉHO KRITÉRIA PRO VÝPOČET ŽIVOTNOSTI KONSTRUKCÍ NAMÁHANÝCH VÍCEOSÝM NÁHODNÝM NEPROPORCIONÁLNÍM ZATÍŽENÍM

M. Balda, J. Svoboda¹

$\mathbf{\hat{U}}\mathbf{vod}$

Studium porušování materiálu konstrukcí namáhaných víceosým náhodným neproporcionálním zatížením, které je v poslední době předmětem zájmu řady jednotlivců i týmů pracovníků z oblasti únavy, je zaměřeno na získávání co nejvíce teoretických i experimentálních poznatků, které by umožnily nalézt dostatečně přesnou a přitom z hlediska aplikace nenáročnou metodu pro výpočet životnosti i pro tuto nejsložitější oblast únavy. Složitost dané problematiky je v tom, že k nahodilosti struktury materiálu a technologických faktorů přibude v případě neproporcionality ještě nahodilost napjatosti. A tak jedinými postuláty, ze kterých lze vyjít, jsou pevnostní hodnoty materiálu, skutečná a nebo syntetická únavová křivka nebo křivka životnosti pro jednoosé harmonické zatěžování a statistické charakteristiky zatěžovacích procesů.

V příspěvku uvedeme některé poznatky, které se získaly při využití energetického kritéria vypracovaného Klimanem [1] pro jednoosé zatěžování na případ únavového víceosého neproporcionálního zatěžování vzorků náhodnými procesy.

Energetické kritérium únavového porušování

Vychází se z představy, že v každém *i*-tém zatěžovacím cyklu absorbuje materiál určité množství hysterezní energie W_i , které je závislé na úrovni napětí v daném zatěžovacím cyklu. Tato energie se v materiálu kumuluje na W a až dosáhne hodnoty W_c , dojde v kritickém místě k poruše. Hodnota energie W_c podle Halforda [2] roste tím více, čím jsou amplitudy zatížení nižší.

Navrhovaná metoda pro odhad únavové životnosti je založena na transformaci procesu s náhodným průběhem zatěžování na ekvivalentní harmonický proces s konstantní amplitudou. Energie do lomu musí být u tohoto procesu stejná jako u původního procesu. Při harmonickém zatěžování je energie W_i spotřebovaná na přírůstek plastické deformace v jednom cyklu přibližně konstantní po celou dobu zkoušky a rovna W_h . Celkovou energii do porušení lze zapsat ve tvaru

$$W_c = N_h W_h \tag{1}$$

a jí odpovídající příkon jako práci za sekundu

$$P_h = f_h W_h \,, \tag{2}$$

kde $f_h\,[{\rm Hz}]$ je frekvence zatěžování
a N_h počet cyklů do porušení.

¹ prof. Ing. Miroslav Balda, DrSc., FEng., Ing. Jaroslav Svoboda Ústav termomechaniky AV ČR, Centrum diagnostiky materiálů, Veleslavínova 11, 301 14 PLZEŇ (tel.: 377 236 415, fax: 377 220 787, e-mail: balda@cdm.it.cas.cz, svoboda@cdm.it.cas.cz)

U náhodného zatěžování nelze hovořit o počtu cyklů do porušení, protože každý z nich má jinou amplitudu, a tedy vnáší do objektu jinou energii W_i a tím i vyvolává jiné porušení. Pro stacionární proces potom platí vztah analogický k rovnici (2),

$$P = \int_0^{W_c} f(W) \,\mathrm{d}W. \tag{3}$$

Amplituda napětí σ_a v obecném cyklu závisí na plastické deformaci ε_{ap} nelineárním vztahem

$$\sigma_a = k \, \varepsilon_{ap}^n \,, \tag{4}$$

v němž k a n jsou materiálové konstanty. Pro harmonické zatěžování, v němž $\sigma_a = \sigma_{ah}$ je konstantní, platí navíc Coffinův-Mansonův vztah pro křivku životnosti

Obr. 1. Hysterezní smyčka

$$\sigma_{ah} = \sigma_f' \left(2 \, N_h\right)^b \tag{5}$$

s dalšími materiálovými konstantami b
a $\sigma_f'.$ Odtud snadno odvodíme inverzní vztah

$$N_h = \frac{1}{2} \left(\frac{\sigma_{ah}}{\sigma'_f} \right)^{1/b}.$$
 (6)

Práce W spotřebovaná na plastickou deformaci v jednom cyklu, která je rovna ploše uzavřené hysterezní smyčky v diagramu σ - ε , se získá integrací rovnice (4) ve tvaru

$$W = k_n \left(\frac{\sigma_a^{n+1}}{k}\right)^{1/n}, \qquad k_n = \frac{2^{n+2}}{n+1}.$$
 (7)

Vyjádříme-li amplitudu σ_a pomocí směrodatné odchylky s napěťového procesu jako

$$\sigma_a = p \, s \,, \tag{8}$$

přejde rovnice (7) na tvar

$$W = k_n \left[\frac{(p \, s)^{n+1}}{k} \right]^{1/n} = \underbrace{k_n \left(\frac{p^{n+1}}{k} \right)^{1/n}}_{u} s^2 \underbrace{(n+1)/2n}_{v} = u \, s^{2v} \,. \tag{9}$$

Rozptyl s^2 napěťového procesu se určí z jeho známé výkonové spektrální hustoty $S_{\sigma\sigma}(f)$:

$$s^2 = 2 \int_0^{f_H} f S_{\sigma\sigma}(f) \mathrm{d}f \,, \tag{10}$$

kde f_H je horní mezní frekvence spektrální výkonové hustoty. Diferencováním rovnice (9) při využití rovnice (10) získáme vztah

$$dW = u v s^{2(v-1)} ds^2 = 2 u v s^{2(v-1)} \int_0^{f_H} S_{\sigma\sigma}(f) df.$$
(11)

Nyní již lze vypočítat výkon P náhodného procesu z rovnice (3):

$$P = 2 u v s^{2(v-1)} \int_0^{f_H} f S_{\sigma\sigma}(f) df.$$
 (12)

Ten ale musí být roven výkonu P_h ekvivalentního harmonického procesu podle rovnice (2). Za použití rovnice (7) a (8) dostaneme následující formuli pro frekvenci f_h ekvivalentního harmonického procesu:

$$f_h = \frac{n+1}{n} s^{-2} \int_0^{f_H} f S_{\sigma\sigma}(f) \,\mathrm{d}f \,.$$
 (13)

Odtud již lze snadno stanovit životnost objektu (v sekundách) jako

$$T_t = \frac{N_h}{f_h} = \left(\frac{p}{\sigma'_f}\right)^{1/b} \frac{n \, s^{(2b+1)/b}}{2 \, (n+1) \, \int_0^{f_H} f \, S_{\sigma\sigma}(f) \, \mathrm{d}f} \,. \tag{14}$$

Experimentální práce

Experimenty proběhly a dále pokračují na trubkových vzorcích s příčným otvorem zatěžovaných kombinací osových sil a krouticích momentů. Stejné vzorky byly již užity v minulosti při jiném způsobu zatěžování (viz [5]). Průměr trubky byl 30 mm, tlouštka stěny 2 mm a průměr příčného otvoru 3 mm. Byly vyrobeny z materiálu ČSN 411523.1, jehož základní údaje pro daná zkušební tělesa (mez pevnosti R_m , mez kluzu R_e , mezní únavová napětí σ_c^*, τ_c^* vrubovaného vzorku a koeficienty koncentrace napětí α jsou uvedeny v tabulce tab. 1.

R_m [MPa]	$R_e \; [MPa]$	σ_c^* [MPa]	τ_c^* [MPa]	$lpha_{\sigma}$	$lpha_{ au}$
551	365,1	120	80	$3,\!15$	$3,\!\overline{64}$

Tabulka 1. Přehled základních údajů o zkušebních tělesech

Vzorky byly zatěžovány dvěma vzájemně nekorelovanými širokopásmovými normálními náhodnými procesy – frekvenčně omezenými bílými šumy na intervalu -10 až 10 Hz. Každá z realizací těchto procesů o trvání $T_b = 20$ minut = 1200 [s], která byla odvzorkována periodou T = 1 [ms], se skládala z 1,2 milionu vzorků a tvořila tak jeden zatěžovací blok. V obr. 1 je ukázka napěťových odezev v trvání 6 vteřin ze začátku zatěžování.

Obr. 2. Začátek realizací složek namáhání v MP
a při $\kappa=0,5$

Vzorky se zatěžovaly při pěti různých poměrech směrodatných odchylek $\kappa = s_{\tau}/s_{\sigma} = [0; 0.5; 1; 3; \infty]$ procesů $\sigma(t), \tau(t)$. Přehled všech naměřených dat je uveden v tab. 2.

κ	zatěžování				regrese			\hat{N}
	s_{σ}	s_{τ}	s_d	N_b	N_L	N_r	N_R	INB
0	91.04	0.00	91.04	15	14.3	23.5	38.4	27.2
0	91.04	0.00	91.04	11	14.3	23.5	38.4	27.2
0	96.76	0.00	96.76	10	6.9	13.0	24.3	14.1
0.5	64.38	32.19	80.48	87	58.3	77.7	103.6	102.9
0.5	64.38	32.19	80.48	58	58.3	77.7	103.6	102.9
0.5	68.42	34.21	85.53	58	29.7	43.0	62.4	53.4
1	40.72	40.72	73.41	170	141.7	189.9	254.4	277.5
1	40.72	40.72	73.41	300	141.7	189.9	254.4	277.5
1	40.72	40.72	73.41	440	141.7	189.9	254.4	277.5
1	43.27	43.27	78.01	389	80.5	105.2	137.5	144.1
1	45.62	45.62	82.24	97	46.1	63.0	86.0	81.5
3	14.97	44.91	69.01	117	236.0	346.1	507.5	540.4
3	14.97	44.91	69.01	280	236.0	346.1	507.5	540.4
3	14.97	44.91	69.01	305	236.0	346.1	507.5	540.4
3	15.91	47.72	73.33	399	143.1	191.9	257.4	282.0
∞	0.00	45.52	68.28	158	256.6	383.8	573.8	606.1
∞	0.00	45.52	68.28	264	256.6	383.8	573.8	606.1
∞	0.00	48.38	72.57	309	156.4	212.3	288.2	314.1

Tabulka 2. Parametry zatěžování, životnosti v počtech bloků N_b , výsledky regrese a odhad počtu bloků \hat{N}_b do lomu podle energetického kriteria

Aplikace energetického kritéria

Navzdory tomu, že energetické kritérium bylo rozpracováno pro případ jednoosé napjatosti, učinil se pokus na jeho použití i pro odhady životnosti částí vystavených kombinovanému namáhání od zatěžování v tahu-tlaku a v krutu. Ty se provedly pro stejné případy poměrů směrodatných odchylek složek namáhání $\kappa = s_{\tau}/s_{\sigma}$, pro jaké se zrealizovaly únavové zkoušky.

Již v minulosti bylo zjištěno, že na únavové poškozování součástí spolupůsobí obě hlavní normálová napětí $\sigma_1(t)$ a $\sigma_2(t)$, vypočítaná z okamžitých hodnot $\sigma(t)$ a $\tau(t)$ obou napěťových procesů (viz [4], [5]). Nejpřirozenější způsob, jak zahrnout vliv obou hlavních napětí, spočívá ve vytvoření jejich výslednice jako jakéhosi fiktivního normálového napětí, jehož modul je

$$|\bar{\sigma}_d(t)| = \sqrt{\sigma_1^2(t) + \sigma_2^2(t)}, \qquad (15)$$

který lze po dosazení a zobecnění vyjádřit jako funkci vstupních napětí formulí

$$|\sigma_d(t)| = \sqrt{\sigma^2(t) + [k_c \,\tau(t)]^2} \,, \tag{16}$$

kde $k_c = \sigma_c^* / \tau_c^*$. Pokud $\sigma(t)$ a $\tau(t)$ navzájem nekorelují, lze i směrodatnou odchylku tohoto fiktivního napětí vyjádřit jako

$$s_d = \sqrt{s_\sigma^2 + (k_c \, s_\tau)^2} \,. \tag{17}$$

Nyní již lze aplikovat formule energetického kritéria na fiktivní napětí σ_d .

V tabulce 2 jsou v první skupině uvedeny pro každý poměr κ směrodatné odchylky s_{σ} , s_{τ} a s_d napěťových procesů a jim odpovídající naměřené životnosti v počtech N_b opakování

zatěžovacích bloků. Ve druhé skupině jsou pod N_r uvedeny životnosti stanovené z regresního vztahu podobného rovnici Wöhlerovy křivky

$$\log N_r = A + B \, \log s_d \tag{18}$$

doprovázené hodnotami levé (N_L) a pravé (N_R) mezní křivky 90% pásma spolehlivosti.

Koeficienty *b* a σ'_f křivky životnosti a koeficienty *k* a *n* cyklické deformační křivky byly použity z výsledků zkoušek nízkocyklové únavy na sledovaném materiálu ČSN 411523.1 [3]:

Ve všech případech se nejdříve z rovnice (6) vypočítal počet cyklů $N_{\rm h}$ ekvivalentního harmonického procesu. Při tom se použila hodnota p = 3 odpovídající $\sigma_d(t)$ z pásma $\pm 3 s_d$, které obsahuje 99,97% všech hodnot gaussovského procesu.

Pro použitý bílý šum omezený horní frekvencí f_H a konstantní spektrální výkonovou hustotou $S_{\sigma\sigma}(f) = S$ se integrál v rovnici (13) podstatně zjednoduší, takže po úpravách dostaneme pro frekvenci ekvivalentního harmonického procesu jednoduchý vztah

$$f_{\rm h} = \frac{n+1}{4n} f_H \,. \tag{19}$$

Odtud lze odhad životnosti v počtu opakování bloků realizací do lomu vyjádřit jako

$$\hat{N}_b = \frac{T_t}{T_b} = \frac{1}{1200} \frac{N_{\rm h}}{f_{\rm h}} \,. \tag{20}$$

Takto určené odhady životnosti jsou uvedeny v posledním sloupci tabulky 2 a vyneseny prázdnými kroužky v obr. 3. Je patrné, že regresní čára, jejíž rovnice je v záhlaví obrázku, a odhady životnosti podle energetického kritéria si relativně dobře korespondují.

Obr. 3. Naměřené životnosti N_b a odhadované \hat{N}_b jako funkce s_d

Z tab. 2 a obr. 3 vyplývá, že pro malé hodnoty poměru κ , při nichž převládá normálové namáhání, je rozptyl měření malý a odhad životnosti podle energetického kritéria relativně

dobře vyjadřuje skutečnou životnost. Pro hodnoty $\kappa > 1$ s převládajícím vlivem smykového namáhání od krutu rozptyl experimentálních dat prudce vzrůstá. Kromě toho jsou vypočtené životnosti \hat{N}_b výrazně na nebezpečné straně za pravou hranicí 90 % pásma spolehlivosti.

Z tab. 2 je zřejmá velká citlivost životnosti na směrodatnou odchylku s_d fiktivního napětí. S klesající s_d prudce stoupá odhad životnosti \hat{N}_b . Nižší naměřené hodnoty životnosti N_b proti očekávaným \hat{N}_b při $\kappa \to \infty$ nelze zatím dobře vysvětlit. Vliv na rozptyl zde mohou mít náhodné jak materiálové vlastnosti tak i jakosti povrchu vrtaného příčného otvoru.

Závěr

Z výsledků provedených zkoušek vyplývá, že Klimanovo energetické kritérium odvozené původně pro odhady životnosti konstrukcí namáhaných jednoosým náhodným zatížením lze s určitými úpravami aplikovat rovněž na případ víceosého neproporcionálního namáhání. Metoda dává dobré výsledky pro případy, kdy převládá normálové napětí, tedy pro poměry $\kappa = s_{\tau}/s_{\sigma} < 1$. Pro vyšší poměry dává výpočet vyšší životnosti, než byly naměřeny. Experimenty ukázaly, že pro poměry $\kappa > 1$ se skutečné životnosti při stejných s_d příliš neliší. Zdá se, že citlivost odhadu životnosti \hat{N}_b je podstatně vyšší než ve skutečnosti, což může vést k větším rozdílům v dosažených výsledcích.

Poděkování

Práce byla podpořena Grantovou agenturou ČR grantovým projektem č. 101/02/0043a výzkumným záměrem Ústavu termomechaniky AV ČR č. AVEZ 2076919.

Literatura

- Kliman V.: Odhad únavovej životnosti pri náhodnom priebehu zaťažovacieho procesu, Strojnícky časopis, 36, 1985, č. 4-5, str. 519-530
- [2] Halford G.R.: The energy required for fatigue, J. of Materials, Vol. 1, No 1, 1966, p. 3
- [3] Svoboda J., Mazanec J.: Stanovení parametrů nízkocyklové únavy vzorků z materiálu 11523, Zkušební protokol CDM ÚT AVČR č. 00/2000/6, Plzeň, 2000
- [4] Balda M., Svoboda J., Václavík M.: Únava strojních komponent při víceosém namáhání se synchronizovanými a fázově posunutými složkami napětí, Výzk. zpráva CDM ÚT AVČR č. Z1306/01, Plzeň, 2001
- [5] Svoboda J., Balda M., Fröhlich V.: Životnost konstrukce namáhané náhodným víceosým zatížením. Sb. 18. konf. Výpočtová mechanika 2002, díl II, str. 435-440, Nečtiny, 2002, ISBN 80-7082-903-6

THE USE OF ENERGY CRITERION FOR COMPUTING THE FATIGUE LIVES OF STRUCTURES STRESSED BY A MULTIAXIAL NONPROPORTIONAL RANDOM LOADING

The originally uniaxial energy criterion of Kliman has been modified for an multiaxial case introducing a fictive damaging stress as a resultant of a couple of normal stresses as a driving one. The resulting fatigue lives are in an acceptable correlation with those obtained experimentally. A scattering of the experimental data increases with a ratio of standard deviations of random tangential and normal stresses.