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This contribution deals with a problem of an identification of natural frequencies and modes of vibrations
by processing run-down data measured at many points of the turboset. A data matrix is assembled out of
a vector of speeds, and vectors of corresponding amplitudes and phases of vibrations measured at every
measuring point. A physical distribution of unbalances along the rotor is unknown, however, it is assumed
to be constant during the run-down of the machine. This assumption allows considering the turboset under
observation as a Single-Input-Multiple-Output (SIMO) system. The processing of data may proceed in two
stages. The first stage performed in the frequency domain includes processing of data from single points
of measurement as Single-Input-Single-Output (SISO) systems using rough initial estimates of natural fre-
quencies calculated from global information on resonance peaks. This step of processing may serve as a
modal filter of noisy data. The other step processes rough or filtered data by a global time domain proce-
dure. The results are natural frequencies with corresponding damping and modes of vibrations. The results
serve both for the operation of the machine, and comparing the fit of the mathematical model.

1. Introduction

A reliability of any technical system becomes a necessity owing to the hard competition on the market. If the system
is a nuclear power plant, a requirement of the total reliability must be fulfilled without any exception. This is the reason
why high attention is paid to measurements of dynamic properties of all important parts of the plant. Moreover, the
measurements could serve as a reference for the future operational diagnostics.

A rotor of a turboset is a typical mechanical system that is excited by centrifugal forces. They are generated by
rotating unbalance masses distributed at random along the rotor length due to residual excentricity of centers of gravity
according to its rotational axis. The dynamic forces are deflecting the rotor, which starts to vibrate. Levels of acceptable
vibrations are limited by international standards, since they may have a damaging effect on the rotor and its environment.
The influence of dynamic forces is amplified if the rotor runs near to its natural frequencies. Those bands of excessive
vibrations are known as critical speeds. This is the reason why natural frequencies and corresponding modes of vibrations
belong to the most important dynamic properties of the rotor.

2. Frequency response of a discrete system

Let us assume the rotor being a linear system with multiple inputs and multiple outputs (MIMO). Should the rotor be
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Figure 1: MIMO system

discretized, its behavior is described by the well known ordinary
linear differential equation

M q̈(t) + B q̇(t) + K q(t) = f(t). (1) (1)

The Fourier transform of the Equation (1) with trivial initial
conditions yields

q(p) = G(p) f(p) , (2) (2)

wherep = iω = i2πf is a scaled frequency parameter. For the
sake of simplicity, the symbolsf andq were used both for vectors

of time functions and their Fourier transforms. The properties of the functions are than strictly joined with their arguments.
The matrixG(p) is afrequency response matrixof the system corresponding the Equation (1), and has the form

G(p) = [ p2 M + p B + K ]−1 = F{G(t)}, (3)



An original to the matrixG(p), an inverse Fourier transform of the matrixG(p), is the matrixG(t) = F−1{G(p)}. It is
a matrix of the rotor responses to Dirac impulses, theimpulse response matrix. The original to the Equation (2) is

q(t) =

∞∫

−∞
G(τ) f(t− τ) dτ = G(t) ∗ f(t) (4)

known as aconvolutionof the impulse response matrix with a vector of excitations. It can be proved that the matrixG(p)
may be expressed also in in terms of modal matricesV andW and a spectral matrix the form (see Appendix A)

G(p) = V q [ p I2n − S ]−1 W H
q (5)

Centrifugal forces acting on the rotor do not possess a general character. They depend on an unbalanceu linearly,
and on speed quadratically. A constantunknownunbalanceu rotating at a speed corresponding the frequency parameter
pk generates steady harmonic excitationf(pk) that causes a steady harmonic responseq(pk) described by the formulae

f(pk) = −p2
k δ(p− pk)u and q(pk) = q(p) δ(p− pk) , (6)

respectively. Both functions contain the Dirac impulseδ(p−pk) on the imaginary frequencypk. It may be removed from
both sides of the Equation (25) giving thus

q(pk) = −V q

[
p2

k (pkI − S)−1
]

W H
q u (7)

3. Local identification of critical speeds

A method for the identification of SISO systems from the frequency response function was developed by Kozánek
many years ago (see [1]). We have adapted the method for the excitation by an unbalance.

The most simple measurement of rotor vibrations is taken in one (i-th) measuring point during very slowly changing
speed of rotation. The measured data should be built out of triples of values, which are speed and a pair of vibration
parameters. Those may be either amplitude and phase, or real and imaginary parts of vibrations. In both cases they
determine a complex valueqi(pk) of vibration under the measured speed correspondingpk, which may be obtained from
the Equation (7):

qi(pk) = −
∑

ν

p2
k

pk − sν
{vH

i }ν
{W H

q u}
ν︸ ︷︷ ︸

−aiν

=
∑

ν

p2
k

pk − sν
aiν (8)

The factorsaiν as coefficients of the linear combination of “resonant terms” determine a degree of modal affinity
of the unknown unbalanceu. The harmonic responseqi(pk) is thus a linear combination of modal contributions of the
unbalance. Hence, responses of the rotor in the measuring point depend on 2n unknowns, sν and aiν , while pk is the
independent variable, speed. In such a way, the unknown unbalanceu entered another vector of unknown sensitivities
aν of the rotor in the measuring point to be identified simultaneously with eigenvaluessν .

In order to diminish the influence of modes not involved into the identification, the expression for the measured
responsêqi(pk) has been appended by a correction term, giving thus

q̂i(pk) ≈
∑

ν

p2
k

pk − sν
aiν +

h

pk
(9)

The main purpose of the correction term is to compensate a position of the origin with respect to the lowest frequencies.
Its influence declines with raising frequency. The quantityh is a new unknown to be identified as well. The identification
is based on the least-squares method using Newton-Raphson algorithm for minimization of the scalar functionS = rHr,
sum of squares of residual modules as differences between identified function values and measuredq̂i(pk):

rki =
∑

ν

p2
k

pk − sν
aiν +

h

pk
− q̂i(pk) (10)

A vector of unknown parametersc = [ sT , aT
i , h ]T is found by iterations(`) as

c
(`+1)
i = c

(`)
i −

[
J (`)

]+

r(`) , (11)



with the Jacobian matrix

J =
[

∂r

∂s
,

∂r

∂a
,

∂r

∂h

]
= [Js, Ja, Jh ] =

[ [
p2

k

(pk − sν)2
aν

]
,

[
p2

k

pk − sν

]
, p+

]
(12)

The symbol + in the position of a superscript designates a pseudo-inversion of an object. Both submatricesJs and
Ja have n columns and as many rows as is the number of measuring frequencies
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Figure 2: Total relative mobility
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Figure 3: Measured and identified response

Initial estimates of the unknowns are determined auto-
matically before starting the optimization procedure. The
eigenvaluessν are estimated from the positions of the am-
plitude peaks of the smoothed mobility which is the function∑

i pk| qi(pk) | (see Fig. 2). There are two curves plotted
in the figure. The curled line corresponds to the measure-
ment, while the smoothed one served for finding frequencies
of peaks.

A better estimate is then found from the approximation
of the response (9) by fitting it to five points of measurement
gathered round the peak pointpm. It has been derived from
the Equation (9) that

p2
k aiν + q̂i(pk) sν +

pk − sν

pk
h ≈ pk q̂i(pk) (13) (13)

Hence, the initial estimatêc of the vector c of unknowns
may be found in the form of solution of the system of over-
determined linear algebraic equations composed out of Equa-
tion (13) applied for frequenciesp` up toph, wherepm is the
peak amplitude| qi(pm) | frequency,̀ = m−2 andh = m+2:




ŝν

âν

ĥ


 =




1 ,
p2

`

q(p`)
,

p` − sν

p` q(p`)
...

...
...

1 ,
p2

h

q(ph)
,

ph − sν

ph q(ph)




+




p`

...
ph


 . (14)

The Figure 3 shows results of the identification of critical
speeds from data measured on a single bearing housing and
collected by a computer controlled data acquisition system.

The upper subfigure displays amplitudes in course of the
rotational frequency. The noisy line has been measured, the
smoothed one shows the identified response. Short lines above
the frequency axis belong to real parts of identified eigenval-
ues.

A variation of the rotor response to the unknown unbal-
ance is shown in the complex plane in the lower subfigure. It
is clear that the identified response fits the measured one quite
well.

Further, a part of a protocol on processing is presented
which shows that the input data have been stored in the Excel-
file TG1.xls and its sheet denotedRND3. The tolerance for
the peak recognition has been chosen 12% which means that
only the peaks of the smoothed mobility higher by more than
12% compared with their neighborhoods are accepted as the
real peaks. Number of equal-weight 3-point smoothing cy-
cles has been chosen equal 10. A speed step for plotting the
identified response has been 3 rpm.



4. Global identification of critical speeds and modes ==========================================
Critical speed identification 20/01/2002

==========================================

file = TG1.xls =>
sheet = RND3 =>
tolpeak % = 12.0000 =>
delta rpm = 3.0000 =>
n-smooth = 10.0000 =>

Exe time = 59.025 [s]

n f(n) b_r(n) Q(n)

1 16.3960 -0.3842*i 0.0234 21.37
2 16.9683 -2.1123*i 0.1235 4.05
3 18.0453 -0.4943*i 0.0274 18.25
4 19.7736 -2.3565*i 0.1183 4.23
5 22.2887 -4.4024*i 0.1938 2.58
6 32.7860 -6.4256*i 0.1923 2.60
7 35.6061 -1.2332*i 0.0346 14.45
8 41.2155 -1.2275*i 0.0298 16.78
9 45.0380 -3.8167*i 0.0844 5.92

The local identification described in the foregoing section
does not guarantee that all critical speeds will be identified,
and that they will get the same values from all points of mea-
surements. Mutual differences could be quite large. This is
the reason why global methods processing the total measured
information were sought. One of them belongs to Heylen et
all. Unfortunately, it is difficult to understand the description
of the method namedLSCE in [2]. Let us derive a similar
modified method [3].

The original to the frequency response matrixG(p) given
by the equation (27) is an impulse response matrixG(t). It
describes dynamic properties of the system under observation
as good as the matrixG(p). The inverse Fourier transform of
G(p) is (with omitted subscriptq with V andW )

G(t) =
∫ ∞

−∞
G (p) e+i2πftdf = V exp(St)W H , (15)

where exp (St) is a matrix exponential of thet-multiple of the spectral matrixS, exp (St) = diag [ exp (sνt) ].
The experimental data are not continuous but sampled functions. Results of the sampling are time- or frequency-series
dependent on a sampling periodT or a sampling frequencyfs. The general Fourier transforms are then replaced by their
discrete variants (DFT, IDFT). Hence, the last equation takes the form of a matrix time series:

G(kT ) = V exp(kST ) W H , k = 0, . . . , N − 1 . (16)

The variableN is the number of samples in every elementary time series. While the continuous response of a causal linear
system to the general excitation has the form

q(t) = G(t) ∗ f(t) =
∫ t

0

G(τ)f(t−τ) dτ =
∫ t

0

G(t−τ) f(τ) dτ , (17)

the sampled variant of it is

q(kT ) = T

k∑
κ=0

G((k−κ)T ) f(κT ) = TV

k∑
κ=0

exp((k−κ)ST )W H f(κT ). (18)

This formula will be used extensively for a derivation of the global identification method which yields the matricesS,
V andW (see Appendix B). Critical speeds are the imaginary parts of the eigenvaluessν while modal dampings are
bν = −Re sν/| sν |. Natural modes of the rotor vibration are columns of the modal matrixV .

Several remarks

A. The general description of the identification method has been based on the assumption that the matrix frequency
seriesG(p) is known and that the transfer of the excitationf(p) to the response is described by the Equation (25).
Unfortunately, we measure only responses caused by an unknown unbalanceu, that is

q(p) = G(p) f(p) = −p2 G(p) u (19)

If we accept the current unbalance as a unit in the measured run, the frequency response matrix becomesG(p) =
q(p)/p2. It is a column vector of dimensionN in case of discrete systems. Consequently, all matricesF and the
modal matrix W are of the order one in this case.

B. The measured data are sometimes injured by measuring noise. The direct processing of the whole collection of data
might be uncertain. In this case, it is possible to filter out the noise via step by step identification of all single points
as SISO systems. Afterwards, we use the reconstructed filtered data as an input for the global procedure.



C. A protocol made during the data processing of a measurement taken in twelve places simultaneously is presented
below. The program is interactive. It allows the user to input his values of variables behind the sign=>. If no new
value has been input, the default value is accepted. The second possibility of the program control lies in the variable
JOB, which may be set by the user to several three-character strings that are recognized by a program switch as
commands.

============================================================
Critical speed identification 22-Jan-2002

============================================================

file = TG1.xls =>
sheet = RND3 =>
tolpeak % = 12.0000 =>
delta rpm = 3.0000 =>
n-smooth = 10.0000 =>
ini peak #= 2.0000 =>

Frequencies found in Sum(|q(f)|*f)/max(|q(f)|*f)

f( 1) = 16.767 [Hz]
f( 2) = 17.800 [Hz]
f( 3) = 19.233 [Hz]
f( 4) = 22.667 [Hz]
f( 5) = 25.967 [Hz]
f( 6) = 30.400 [Hz]
f( 7) = 36.333 [Hz]
f( 8) = 41.567 [Hz]
f( 9) = 45.367 [Hz]

JOB = glo =>

JOB = ide =>
nf = 11 => 10
p = 20 =>

Identified values:

k f(k) n(k) b_p(k) Q
[Hz] [rpm]

1 15.7129 -0.6294*i 942.78 -37.76*i 0.0400 12.49
2 16.9152 -0.5089*i 1014.91 -30.53*i 0.0301 16.63
3 18.7301 -1.0926*i 1123.80 -65.56*i 0.0582 8.59
4 20.3696 -1.4223*i 1222.17 -85.34*i 0.0697 7.18
5 26.0886 -1.6570*i 1565.31 -99.42*i 0.0634 7.89
6 30.9713 -2.8076*i 1858.28 -168.46*i 0.0903 5.54
7 35.2757 -1.2567*i 2116.54 -75.40*i 0.0356 14.04
8 40.4713 -1.6340*i 2428.28 -98.04*i 0.0403 12.39
9 48.0000 -1.3580*i 2880.00 -81.48*i 0.0283 17.68

D. There are differences between the identification results gained from the local and global approaches. They can
easily occur as seen from Fig. 5 which shows modules of all measured responses at once. The local approach may
give different eigenvalues at different points of measurement.
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Figure 4: Measured responses in individual points
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E. The Figure 5 shows the impulse responsesG(kT ) to the unknown unbalance. They have been obtained via FFT
from G(fsn/N). The Fourier transform needs to have the data ofG(fsn/N) distributed regularly with constant
frequency step over the whole frequency interval, zero frequency included. However, the measurement started at
a higher frequency, about 600 rpm in our case. Hence, it was necessary to reconstruct data at the beginning of the
frequency interval. Since the influence of damping may be omitted far from the critical speeds, the non-measured
responses have been calculated using the formulae

g(0) = (1− px/pm)2 g(pm) and g(pk) =
g(0)

1− (pk/pm)2
for 0 <= k < m, (20)

wherepx is the frequency of the first resonance peak andpm the lowest frequency of the measurements.
G. One of twelve natural modes is plotted in the Fig. 6. The best insight into the modes may be obtained by animation

of modes after the global identification.

Figure 6: 2nd natural mode of the rotor

5. Conclusions

This paper deals with three approaches to the problem of an
identification of dynamic properties of rotors based on run-down
vibration data. Non of them requires any knowledge of the unbal-
ance that generated measured vibrations.

The first method is based on the local identification of criti-
cal speeds. It yields eigenfrequencies observable at the measured
point. They are natural frequencies and corresponding damping.
The second method gives a global estimation of eigenvalues and
modes by processing matrix time series of impulse responses.
The third method is a combination of both methods. The lo-
cal identification serves as a modal filter for input data, and the
global method returns the final identified frequencies, dampings
and modes.

The described procedure can serve for diagnostic purposes.
The changes of critical speeds and natural modes might initiate
an inspection of the tested machine.
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Appendix A: Frequency response matrix

It is possible to rewrite the system of second order equations (1) into first order ones. The Equation (1) complemented
by the identityM q̇(t) = M q̇(t) gives

[
M , O
O , M

]

︸ ︷︷ ︸
M s

[
q̇(t)
q̈(t)

]

︸ ︷︷ ︸
v̇s(t)

+
[

O , −M
K , B

]

︸ ︷︷ ︸
−As

[
q(t)
q̇(t)

]

︸ ︷︷ ︸
vs(t)

=
[

o
f(t)

]

︸ ︷︷ ︸
u(t)

. (21)

Deflections of the rotors may to be expressed as a function of the vectorv in the form of the following linear combi-
nation

q(t) = Cs vs(t) + Ds f(t) . (22)



Both Equations (21) and (22) rewritten together create a system known in the control theory as state space equations,
which are in a slightly modified version of the form

[
Ms , O2n,n

On,2n , In

] [
v̇s(t)
q(t)

]
=

[
As , Bs

Cs , Ds

] [
vs(t)
f(t)

]
, (23)

with matrices

M s =
[

M , On

On , M

]
, As =

[
On , M
−K , −B

]
, Bs =

[
On

In

]
,

vs =
[

q(t)
q̇(t)

]
, Cs = [ In , On ] , Ds = On .

(24)

The characteristic equation corresponding to (21) leads to the eigenvalue problem, the solution of which yields one
diagonal spectral matrixS composed of eigenvaluessν and two modal matrices,V andW , corresponding to it, con-
taining right-hand-side eigenvectorsvν and left-hand-side eigenvectorswν , respectively. The Fourier transform applied
to Equation (23) with zero initial conditions gives

q(p) = {Cs [ p M s −As ]−1 Bs + Ds}︸ ︷︷ ︸
G(p)

f(p) . (25)

The frequency response matrix may be expressed after using the formulae for matricesBs, Cs, Ds and both condi-
tions of ortho-normalityW HM sV = I2n and W HAsV = S as

G(p) = [ In , On ] V︸ ︷︷ ︸
V q

[ p W HM s V︸ ︷︷ ︸
I2n

−W HAs V︸ ︷︷ ︸
S

]−1 W H

[
In

On

]

︸ ︷︷ ︸
W H

q

. (26)
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Figure 7: A scheme of generating an element of the response vector

Hence, the frequency response
matrix may be written not only as
the function of the coefficient matrices
M, B, K, but also in terms of spec-
tral and modal matricesS , V , W :

G(p) = V q [ p I2n − S ]−1 W H
q (27) (27)

Matrices V q and W q contain
only the deflection submatrices.

Appendix B: Global identification of matrices S, V and W

Should n consecutive arbitrary independent excitations be applied virtually inn selected points of the system, and
the excitation vectors build a matrix time seriesF (κT ) ∈ Rn,n, the corresponding matrix time series of responses

Q(kT ) = T

k∑
κ=0

G((k−κ)T )F (κT ) = TV

k∑
κ=0

exp((k−κ)ST ) W H F (κT ) (28)

Let Dirac impulses be applied for an excitation. This means that the excitation matrix time series becomesF (0) = In

and F (κT ) = On for κ > 0. This excitation would generate matrix time series of impulse responses. Now, let us
try to find additional excitationF (κT ) 6= On for 1 ≤ κ ≤ µ that would stop the vibration of the system caused by
F (0) = In. It means that we require the responseQ(κT ) = Om,n for κ > µ. Should the mechanical system be
linear as described by the equation (1) and controllable from a selected set of points, the number of periods for stopping
vibrations is µ = 2 provided that the excitation has been applied at every point. Should the number of excitation points
n be smaller than number of degrees of freedomm, the number of periods for stopping the system is

µ ≥ 2 nf

n
=

ne

n
, (29)



wherenf is the number of natural frequencies in the interval of observation, andne the corresponding number of eigen-
values. The conditionQ(κT ) = Om,n for κ > 0 leads to the over-determined system of equations




Gµ+1 , Gµ , · · · , G1

Gµ+2 , Gµ+1 , · · · , G2

... ,
... , ,

...

GN−1 , GN−2 , · · · , GN−µ−1







In

F1

...
Fµ


 =




Om,n

Om,n

...

Om,n




, (30)

solution of which is




F1

F2

...
Fµ


=−




Gµ , Gµ−1 , · · · , G1

Gµ+1 , Gµ , · · · , G2

... ,
... , ,

...
GN−2 , GN−3 , · · · , GN−µ−1




+


Gµ+1

Gµ+2

...
GN−1


 . (31)

The second right-hand side of the equation (18) multiplied byV +/T yields the following homogenous system of
algebraic equations

[
In , F H

1 , F H
2 , · · · , F H

µ

]



W expH [(µ+1)ST ]
W expH(µST )

...
W expH(ST )


 = On . (32)

It is convenient to introduce new symbols for submatrices

Z = expH (ST ) and Eκ = W Zκ . (33)

Hence, the equation (32) may be rewritten into the following form:




−F H
1 , −F H

2 , · · · , −F H
µ−1 , −F H

µ

In , On , · · · , · · · , On

On , In ,
.. . , · · · ,

...
... ,

. .. ,
.. . ,

. .. ,
...

On , · · · , On , In , On







Eµ

Eµ−1

...
E2

E1




=




Eµ

Eµ−1

...
E2

E1




Z ,
(34)

which is a generalized eigenvalue problem of the typeAE = E Z , whereZ is the spectral matrix ofA andE a modal
matrix. Since the sampling frequencyfs = 1/T , an estimatêS of the spectral matrixS of the original problem may be
found from the definition of the matrixZ in (33) as

Ŝ = fs ln ZH (35)

The estimated spectral matrix̂S may include additional eigenvalues that do not belong to the original system in cases
that the number of eigenvalues required has been higher than in reality.

The simplest way how to obtain the modal matrix of left-hand-side vectorsW is based on the second expression in
(33) which gives

W = E1 Z+ (36)

The modal matrixV of right-hand-side vectors is calculated from the equation (16) which must hold for everyk.
Thus, we get an over-determined system, the solution of which is

V =
[
G(kT )

] [
exp(kST )W H

]+

for k = 0, 1, . . . , N−1 (37)
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