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Interatomic interactions in bcc iron are described by an N-body potential from
the paper by Ackland et al, Phil.Mag. A 75 (1997) 713. In the present
contribution, two different crack orientations (crack plane/crack front) are
treated: a pre-existing Griffith (through) central crack (001)[010] and an
edge crack (001)[110] (through, pre-existing). The relatively long cracks are
embedded in thin bcc iron crystals of different orientations and loaded in
tension mode I.

The samples were loaded symmetrically in the 〈001〉 directions by prescribing
external forces Fext distributed homogeneously at individual atoms lying in
several surface layers. Newtonian equations of motion for the individual atoms
have been solved by a central difference method using time integration step
h = 1× 10−14 s. Each time step t = nh we monitored the total number of
existing interactions and global energy balance in the system.
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Central (001)[010] crack

The crystal with basic cubic orientation {100} consists of 1999 planes in the
[100] direction, 100 planes along the crack front in the [010] direction and
1999 planes in the [001] direction. The central pre-existing (through) crack
has been placed in the middle of the crystal. The crack is introduced by
removing part of atoms from the central (001) plane. The initial half crack
length in the [100] direction is lo = 100ao, where ao = 2.8665Å is the lattice
parameter. The initial half crack opening is co = ao. The total number of
atoms in the crystal is N = 98 892 298. Parallel processing in MPI has been
used for these simulations.
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Edge (001)[110] crack

The simulated crystal has the same orientation and similar geometry as in our
fracture experiments by Landa et al, Czech. J. Phys. 48 (1998) 1589: edge
crack lies on a (001) plane, crack front is oriented along the [110] direction
and the direction of potential crack extension is [1̄10]. The crystal contains
600 planes (001) (along the length L), 100 planes (1̄10) (along the width W )
and 20 planes (110) along the crack front (thickness B). The initial edge
crack of the length lo = 30ao/

√
2 was placed in the middle of the crystal and

it was created by cutting of interatomic bonds across the crack plane. Half of
the initial crack opening is co = ao/4. The boundary correction factors are
similar in simulations and in experiments. The simulated crystal was initially
heated up to average temperature of 300 K during 1000 time steps. After
that, the crystal was gradually (linearly) loaded during 3200 time steps up to
an applied stress level of 8.42 GPa. The total number of atoms in the system
is N = 600 000 and single processing has been used in this case.
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Results
Central crack
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at time step 23 340 in the middle of the crystal, KMD = 0.879 MPam1/2, the
critical Griffith stress intensity expected according to anisotropic LFM for
cleavage mechanism of crack initiation: KG = 0.817 MPam1/2 for plane
strain, KG = 0.793 MPam1/2 for plane stress.

Detail at the left crack front before crack initiation

Atomic configuration after crack initiation, the arrow shows the original crack
tip point
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Time step:
23300
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Time step:
23350
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Time step:
23400
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Time step:
23450
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Time step:
23500
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Time step:
23550
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Time step:
23600
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Slip planes and patterns at the left crack front.
Time step 14 100, view (010)[010].
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Two different slip patterns:

• BLS ⇒ {101}, θ ≈ 45◦

• BLS ⇒ {112}, θ = 26.565◦
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slip patterns on two {101} planes
for time step 14 030, view (101)[101]

crack front
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slip patterns on two {101} planes
for time step 14 100, view (101)[101]

↑ σθr

↑
τb

ECF 16 / July 3-7, 2006 / Alexandroupolis, Greece 36



In
st
it
ut
e
of
T
he
rm
om
ec
ha
ni
cs
A
S
C
R Beginning of plastic deformation:

slip patterns on two {101} planes
for time step 14 670, view (101)[101]

↑
b, s

ECF 16 / July 3-7, 2006 / Alexandroupolis, Greece 37



In
st
it
ut
e
of
T
he
rm
om
ec
ha
ni
cs
A
S
C
R

cr
ac
k
pl
an
e

[100]

σA[001]

[010]

b

[1̄1̄1] (101)

crack front

The slip system (101)[1̄1̄1] is inclined to the crack plane and contains the
crack front. Dislocation emission in this slip system causes crack tip blunting.
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b
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(112)

crack front

The second slip system (112)[1̄1̄1] is oblique to the crack front and dislocation
emission makes a jog in the crack front in the direction of b. It enables (after
time step 16 000) later a slow plastic crack growth in the middle of the crystal.
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Crack stability and slip patterns at the left crack front.
Time step 15 820, view (010)[010].
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Results
Edge crack

Temperature of 300 K
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The slip systems 〈111〉{112} are inclined to the crack plane under the angle
θ = 35.26◦, contain the crack front and they are oriented in the easy twinning
direction, similar to our former plane strain simulations. In this case the stress
barrier for twin formation in the 〈111〉〈112〉 slip systems at temperature of 0 K
is much lower (τtwin = 9.3 GPa) than for dislocation generation (16.3 GPa)
with the used N-body potential.
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has been monitored first in the middle of the sample, the stress intensity at
the crack front was KMD = 0.749 MPam1/2. It is close to
Kc = 0.835 MPam1/2 expected according to anisotropic LFM for plane stress
and the used potential with the surface formation energy 2γ001 = 3.624 J/m2.

Similar to plane strain simulations, crack initiation was accompanied by
generation of unstable stacking faults that later transform to twins in the
〈111〉{112} slip systems - see the next slide.
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in the middle plane (110) of the crystal,
time step 3 600,

the original crack tip point is denoted by the line.
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Dislocation generation in a 〈111〉{112} slip system
below the lower twin band, time step 4 100, (110) surface.
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at the dislocation nucleus.
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• The results indicate that brittle initiation of the crack (001) is possible
at low temperature or under fast loading.

• At temperature of 300 K slip processes are detected.

• Dislocation emission on the inclined slip planes hinder crack growth, while
on oblique plane creates jogs in the crack front, which enables a slow plastic
crack growth.

• The crack (001) may produce also twins, if the inclined {112} slip systems
are oriented in the easy twinning direction.

• The results are in agreement with continuum models and experimental
observation in bcc iron.
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