
ROOT-FINDING METHODS FOR SOLVING
DISPERSION EQUATIONS

Petr Hora

Institute of Thermomechanics AS CR, v. v. i.
Prague, Czech Republic

ENGINEERING MECHANICS 2016, Mini-symposium WAVES

May 9 – 12, 2016 Svratka Czech Republic

Motivation: Bar impact problem

To calculate the stress wave propagation in a bar impact problem
it is used the integration along the dispersion curves.

This dispersion relations f(x,γa) is defined as

(
2 − x2

)2
J0(γaA) J1(γaB)+4ABJ1(γaA) J0(γaB)−

2x2

γa
AJ1(γaA) J1(γaB) = 0,

where

a radius of the semi-infinite bar,

γ wavenumber,

x the ratio of the phase velocity and the shear wave velocity,

κ the ratio of the squares of the phase velocities,

A
√
κx2 − 1,

B
√
x2 − 1,

J the Bessel function of the first kind.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 2 / 47

Transcendental equations

I A transcendental equation is an equation containing a transcendental
function of the variable(s) being solved for.

I The most familiar transcendental functions are:
I the logarithm,
I the exponential (with any non-trivial base),
I the trigonometric,
I the hyperbolic functions,
I and the inverses of all of these.

I Less familiar are:
I The special functions of analysis, such as the gamma, elliptic, and zeta

functions, all of which are transcendental.
I The generalized hypergeometric and Bessel functions are transcendental

in general, but algebraic for some special parameter values.

WIKIPEDIA, Transcendental function

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 3 / 47

f(x,γa)

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 4 / 47

Flooded f(x,γa)

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 5 / 47

Solution methods

1. Root-finding

2. Chebyshev interpolation

3. Interval arithmetics

4. Marching squares

5. . . .

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 6 / 47

Root-finding, 3D

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 7 / 47

Root-finding, cut

x
0 1 2 3 4 5

-20

-15

-10

-5

0

5
.a = 2:5

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 8 / 47

Root-finding, DC

.a
0 10 20 30 40 50

0

1

2

3

4

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 9 / 47

Root-finding, limits

1. 0 < x < 1
lim

γa→+∞ x = 0.92741271

2. 1 < x < 1/
√
κ

lim
γa→0+

x = 1.61245155

3. x > 1/
√
κ

lim
γa→0+

x =

{
J1(γax) = 0,[
γax J0

(√
κγax

)
− 2
√
κJ1

(√
κγax

)]
= 0.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 10 / 47

Root-finding, Algorithm

I Stepping in γa,

I The guess for the first steps by means of the limit,

I The guess for the next steps by means of the extrapolation,

I Newton method,

I Parallel processing.

Disadvantages

I Root skip,

I Lazy (particularly for random γa),

I Need of differentiation (Newton method).

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 11 / 47

Root-finding, Algorithm

I Stepping in γa,

I The guess for the first steps by means of the limit,

I The guess for the next steps by means of the extrapolation,

I Newton method,

I Parallel processing.

Disadvantages

I Root skip,

I Lazy (particularly for random γa),

I Need of differentiation (Newton method).

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 11 / 47

Chebyshev interpolation

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 12 / 47

Chebyshev interpolation

% D e f i n e two f u n c t i o n s
f = chebfun (@(x) s i n (x . ˆ 2)+s i n (x) . ˆ 2 , [0 , 1 0]) ;
g = chebfun (@(x) exp (−(x−5) . ˆ 2 / 1 0) , [0 , 1 0]) ;

% Compute t h e i r i n t e r s e c t i o n s
r r = r o o t s (f − g) ;

% P l o t t h e f u n c t i o n s
p l o t ([f g]) , h o l d on

% P l o t t h e i n t e r s e c t i o n s
p l o t (r r , f (r r) , ’ o ’)

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 13 / 47

Chebyshev interpolation

Solve-the-proxy methods in one unknown:

Approximation Name

Piecewise linear interpolation Make-a-Graph-Stupid algorithm
Linear Taylor series Newton–Raphson iteration
Linear interpolant secant iteration

Quadratic Taylor series Cauchy’s method
Quadratic interpolant Muller’s method

Inverse quadratic interpolant Brent’s algorithm
(Linear-over-linear) Padé approximant Halley’s scheme

(Quadratic-over-quadratic) Padé approximant Shafer’s method
Chebyshev polynomial interpolant Chebyshev proxy method

J.P. Boyd: Finding the Zeros of a Univariate Equation, SIAM Rev., 55(2)

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 14 / 47

The Runge’s phenomenon
I Problem of oscillation at the edges of an interval that occurs when using

polynomial interpolation with polynomials of high degree over a set of
equispaced interpolation points.

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

5
9
17

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 15 / 47

The Runge’s phenomenon
I Problem of oscillation at the edges of an interval that occurs when using

polynomial interpolation with polynomials of high degree over a set of
equispaced interpolation points.

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

5
9
17

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 16 / 47

Chebyshev polynomials of the first kind, I

I The recurrence relation

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x).

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 17 / 47

Chebyshev polynomials of the first kind, II

I Trigonometric definition

Tn(x) = cos(n arccos x) = cosh(n arcosh x)

I Roots
n different simple roots, called Chebyshev roots, in the interval [−1, 1].

xk = cos

(
2k− 1

2n
π

)
, k = 1, . . . ,n

I Extrema
xk = cos

(
k
n
π
)

, k = 0, . . . ,n

All of the extrema have values that are either −1 or 1.
Extrema at the endpoints, given by:

Tn(1) = 1

Tn(−1) = (−1)n

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 18 / 47

Chebyshev polynomials of the first kind, III

x
-1 -0.5 0 0.5 1

T
n
(x

)

-1

-0.5

0

0.5

1

0 1 2 3 4 5

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 19 / 47

Chebyshev interpolation

I Basic idea:
Represent functions using interpolants through (suitably rescaled) Chebyshev
nodes

xj = − cos

(
jπ

n

)
, 0 6 j 6 n.

I Such interpolants have excellent approximation properties.

I Interpolants are constructed adaptively, more and more points used, until
coefficients in Chebyshev series fall below machine precision.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 20 / 47

Chebyshev-proxy rootfinder

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 21 / 47

Chebyshev interpolation, Algorithm I

1. Choose the following:

1.1 γa

1.2 Search interval, x ∈ [a,b].
The search interval must be chosen by physical and mathematical analysis of
the individual problem. The choice of the search interval [a,b] depends on the
user’s knowledge of the physics of his/her problem, and no general rules are
possible.

1.3 The number of grid points, N.
N may be chosen by setting N = 1 + 2m and the increasing N until the
Chebyshev series displays satisfactory convergence. To determine when N is
sufficiently high, we can examine the Chebyshev coefficients aj, which
decrease exponentially fast with j.

2. Compute a Chebyshev series, including terms up to and including TN, on the
interval x ∈ [a,b].

2.1 Create the interpolation points (Lobatto grid):

xk ≡
b− a

2
cos

(
π
k

N

)
+
b+ a

2
, k = 0, 1, 2, . . . ,N.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 22 / 47

Chebyshev interpolation, Algorithm II

2.2 Compute the elements of the (N+ 1)× (N+ 1) interpolation matrix.
Define pj = 2 if j = 0 or j = N and pj = 1, j ∈ [1,N− 1]. Then the elements
of the interpolation matrix are

Ijk =
2

pjpkN
cos

(
jπ
k

N

)
.

2.3 Compute the grid-point values of f(x), the function to be approximated:

fk ≡ f(xk), k = 0, 1, . . . ,N.

2.4 Compute the coefficients through a vector-matrix multiply:

aj =

N∑
k=0

Ijkfk, j = 0, 1, 2,,N.

The approximation is

fN ≈
N∑
j=0

ajTj

(
2x− (b+ a)

b− a

)
=

N∑
j=0

aj cos

{
j arccos

(
2x− (b+ a)

b− a

)}
.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 23 / 47

Chebyshev interpolation, Algorithm III

3. Compute the roots of fN as eigenvalues of the Chebyshev–Frobenius matrix.
Frobenius showed that the roots of a polynomial in monomial form are also
the eigenvalues of the matrix which is now called the Frobenius companion
matrix. Day and Romero developed a general formalism for deriving the
Frobenius matrix for any set of orthogonal polynomials.

4. Refine the roots by a Newton iteration with f(x) itself.
Once a good approximation to a root is known, it is common to polish the
root to close to machine precision by one or two Newton iterations.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 24 / 47

Chebyshev interpolation, Numerical experiments

I ApproxFun (Julia package)

URL: github.com/ApproxFun/ApproxFun.jl.git

I CHEBFUN (MATLAB toolbox)

Driscoll, T.A., Hale, N., Trefethen, L.N., editors, Chebfun Guide,
Pafnuty Publications, Oxford, 2014.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 25 / 47

Arbitrary precision computations

Evaluate

f(x,y) = (333.75 − x2)y6 + x2(11x2y2 − 121y4 − 2) + 5.5y8 + x/(2y)

at (77617, 33096).

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .

Taschini, S.: Interval Arithmetic: Python Implementation and Applications.
In the Proceedings of the 7th Python in Science Conference (SciPy 2008).

Rump, S.M.: Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica 19:287-449, 2010.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 26 / 47

Multiprecision interval arithmetic

from sympy . mpmath i m p o r t i v
p r i n t ’ u s i n g 35 d e c i m a l p l a c e s . . . ’
i v . dps = 35
i v f = lambda x , y : (i v . mpf (’ 3 3 3 . 7 5 ’) \
− x∗∗ 2) ∗y∗∗6 \
+ x∗∗2∗ (i v . mpf (’ 1 1 ’) ∗x∗∗2∗y∗∗2 \
− i v . mpf (’ 1 2 1 ’) ∗y∗∗4 − i v . mpf (’ 2 ’)) \
+ i v . mpf (’ 5 . 5 ’) ∗y∗∗8 + x /(i v . mpf (’ 2 ’) ∗y) ;
i v a = i v . mpf (s t r (a))
i v b = i v . mpf (s t r (b))
i v z = i v f (i v a , i v b)
p r i n t i v z

shows

u s i n g 35 d e c i m a l p l a c e s . . .
[−6.827396059946821368141165095479816292382 , \
1.172603940053178631858834904520183709123]

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 27 / 47

p r i n t ’ u s i n g 36 d e c i m a l p l a c e s . . . ’
i v . dps = 36
. . .

shows

u s i n g 36 d e c i m a l p l a c e s . . .
[−0.82739605994682136814116509547981629200549 , \
−0.82739605994682136814116509547981629181741]

= −(0.82739605994682136814116509547981629200549
181741)

width of interval = upper bound on error

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 28 / 47

Interval Analysis

Computing with intervals began:
Bounding rounding and truncation errors in finite precision arithmetic
Ramon Moore, 1966, Interval Analysis

One of Methods of Representing Uncertainty.

Uncertain parameters are described by an upper and lower bound,
then rigorous bounds on the response are computed using

interval arithmetic
and

interval functions.

Moore, R. E.: Interval analysis.
Prentice-Hall series in automatic computation.
Englewood Cliffs, N.J.: Prentice-Hall, 1966.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 29 / 47

Interval Arithmetic
Upper and Lower bound

[a,b] = x|a 6 x 6 b

Midpoint and Radius
[x0, r] = x|x0 − r 6 x 6 x0 + r

Degenerate Interval - Scalar
x = [a,a]

Width
w([a,b]) = b− a

Magnitude
|[a,b]| = max(|a|, |b|)

Midpoint
mid([a,b]) = (a+ b)/2

Equality
[a,b] = [c,d]⇐⇒ a = b, c = d

Ordering
[a,b] < [c,d]⇐⇒ b < c

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 30 / 47

Interval Arithmetic

Addition
[a,b] + [c,d] = [a+ c,b+ d]

Subtraction
[a,b] − [c,d] = [a− d,b− c]

Multiplication

[a,b]× [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

Division

[a,b]÷ [c,d] = [a,b]×
[

1

d
,

1

c

]
provided [c,d] does not contain 0

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 31 / 47

Theorem (Ratz, 1996)

Let 〈a,b〉 and 〈c,d〉 be two non-empty bounded real intervals.
Then

〈a,b〉 ÷ 〈c,d〉 =

〈a,b〉 × 〈1/d, 1/c〉 if 0 6∈ 〈c,d〉
〈−∞,∞〉 if 0 ∈ 〈a,b〉∧ 0 ∈ 〈c,d〉
〈b/c,∞〉 if b < 0 ∧ c < d = 0
〈−∞,b/d〉 ∪ 〈b/c,∞〉 if b < 0 ∧ c < 0 < d
〈−∞,b/d〉 if b < 0 ∧ 0 = c < d
〈−∞,a/c〉 if 0 < a∧ c < d = 0
〈−∞,a/c〉 ∪ 〈a/d,∞〉 if 0 < a∧ c < 0 < d
〈a/d,∞〉 if 0 < a∧ 0 = c < d
∅ if 0 6∈ 〈a,b〉∧ c = d = 0

Ratz, D.: On extended interval arithmetic and inclusion isotonicity. Institut
für Angewandte Mathematik, Universität Karlsruhe, 1996.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 32 / 47

Anomalies in Interval Arithmetic

Subdistributivity

[a,b]× ([c,d]± [e, f]) ⊆ [a,b]× [c,d]± [a,b]× [e, f]

Subcancelation
[a,b] − [c,d] ⊆ ([a,b] + [e, f]) − ([c,d] + [e, f])

[a,b]÷ [c,d] ⊆ ([a,b]× [e, f])÷ ([c,d]× [e, f])

0 ∈ [a,b] − [a,b]

1 ∈ [a,b]÷ [a,b]

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 33 / 47

Images of Functions

Monotone functions If f(x) : x→ R is non-decreasing, then

f([a,b]) = [f(a), f(b)].

Examples:

exp([a,b]) = [exp(a), exp(b)]

log([a,b]) = [log(a), log(b)]

Some basic functions Images x2, sin(x), . . ., are easily calculated, too.

Example:

[a,b]2 =

{ [
min(a2,b2), max(a2,b2)

]
, if 0 6∈ [a,b],[

0, max(a2,b2)
]

, otherwise.

More complex functions Bessel, . . .

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 34 / 47

Goal of Interval Computation

To compute the SHARPEST possible interval solution set
which COMPLETELY CONTAINS the true solution set.

Rigor is easy to accomplish - [−∞,∞] always true but useless

Tight solutions are difficult - primarily due to dependence

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 35 / 47

The Dependence Problem

Interval arithmetic implicitly assumes
each occurrence of a variable is independent.

Example: Compute X2 without the power rules where X = [−1, 2].

X2 = X× X = [min(−2, 1, 4), max(−2, 1, 4)] = [−2, 4]

The answer should be X2 = [0, 4]

⇓

The excess width is know as the dependence problem.

If an interval variable appears only once in an expression
no widening of the interval occurs.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 36 / 47

Solving the Dependence Problem

1. Analytically rewrite expressions to minimize
the number of times a variable occurs.

2. Delay interval computations as late as possible

3. Reduce dependencies computationally
(e.g. with automatic differentiation)

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 37 / 47

Programming with Intervals

I Matlab

I INTLAB - pure Matlab

I interval arithmetic with real and complex data including scalars, vectors,
matrices and sparse matrices

I automatic differentiation
I rigorous interval standard functions
I rigorous input and output
I multiple precision interval arithmetic

I b4m - uses C interval library, BIAS

I C/C++ and Fortran 77/90 - BIAS, PROFIL, C-XSC, INTLIB, GlobSol

I Python - interval, mpmath(iv)

I Julia - ValidatedNumerics.jl, Intervals.jl

I Maple - intpak, intpakX

I Mathematica

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 38 / 47

Interval Newton Method

I

Na

Na ∩ I

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 39 / 47

Interval Newton Method

I

Na1 Na2

Na1 ∩ I

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 40 / 47

Interval Newton Method

I

Na1 Na2

Na1 ∩ I Na2 ∩ I

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 41 / 47

Automatic Differentiation (AD)

- is a set of techniques based on the mechanical application of the chain rule
to obtain derivatives of a function given as a computer program.

AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations such as additions or
elementary functions such as exp(). By applying the chain rule of derivative
calculus repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, and accurate to working precision.

Conceptually, AD is different from symbolic differentiation and approximations
by divided differences.

AD is used in the following areas:

I Numerical Methods

I Sensitivity Analysis

I Design Optimization

I Data Assimilation & Inverse Problems

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 42 / 47

f(x1, x2) = x1x2 + sin(x1)

By Berland at en.wikipedia [Public domain], from Wikimedia Commons

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 43 / 47

f u n c t i o n [hodnota] = DispRov3 (GammaD, Zeta , P o i s s o n)

hodnota=NaN ;

w h i l e 1

k=(1−2∗P o i s s o n) /(2∗(1−P o i s s o n)) ;

GammaD=s c a l 2 m a t r (GammaD, Zeta) ;
Zeta=s c a l 2 m a t r (Zeta ,GammaD) ;

i f (s i z e (GammaD)==s i z e (Zeta))
hodnota=hodnota .∗ones (s i z e (GammaD)) ;

e l s e
d i s p (’GammaD a Zeta mus ı́ m ı́t s t e j n o u v e l i k o s t ’)
b r e a k

end

i f (a l l (a l l (GammaD>=0)) && a l l (a l l (Zeta>=0)))
Zeta (˜ (Zeta>=(1/ s q r t (k))))=NaN ; %Hodnoty p ř e s a h u j ı́ c ı́ vymezený obor hodnot j s o u i g n o r o v á n y .

hodnota=(Zeta .ˆ2−2) . ˆ 2 .∗ s i n (GammaD.∗s q r t (Zeta .ˆ2−1)) .∗cos (GammaD.∗s q r t (k .∗Zeta .ˆ2−1))
+4.∗s q r t (Zeta .ˆ2−1) .∗s q r t (k .∗Zeta .ˆ2−1) .∗cos (GammaD.∗s q r t (Zeta .ˆ2−1)) .∗ s i n (GammaD.∗s q r t (k .∗Zeta

.ˆ2−1)) ;
e l s e

d i s p (’GammaD a Zeta mus ı́ b ý t m a t i c e k l a d n ý c h r e á l n ý c h č ı́ s e l (i n t e r v a l ů) ’)
b r e a k

end

b r e a k
end
end

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 44 / 47

Marching Squares

- is a computer graphics algorithm that generates contours for a two-dimensional
scalar field (rectangular array of individual numerical values).

Typical applications include the Contour lines on topographic maps
or the generation of isobars for weather maps.

The algorithm is embarrassingly parallel,
because all cells are processed independently.

WIKIPEDIA, Marching Squares

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 45 / 47

Thank you for your attention!

Any questions?

The work was supported by the institutional support RVO: 61388998.

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 46 / 47

Contents

Motivation

Transcendental equations

Solution methods

Root-finding

Chebyshev interpolation

Interval Arithmetics

Marching Squares

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 47 / 47

	Motivation
	Solution methods
	Root-finding
	Chebyshev interpolation
	Arbitrary precision computations
	Interval Analysis
	Automatic Differentiation
	Marching Squares

