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Motivation: Bar impact problem

To calculate the stress wave propagation in a bar impact problem
it is used the integration along the dispersion curves.

This dispersion relations f(x,γa) is defined as

(
2 − x2

)2
J0(γaA) J1(γaB)+4ABJ1(γaA) J0(γaB)−

2x2

γa
AJ1(γaA) J1(γaB) = 0,

where

a radius of the semi-infinite bar,

γ wavenumber,

x the ratio of the phase velocity and the shear wave velocity,

κ the ratio of the squares of the phase velocities,

A
√
κx2 − 1,

B
√
x2 − 1,

J the Bessel function of the first kind.
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Transcendental equations

I A transcendental equation is an equation containing a transcendental
function of the variable(s) being solved for.

I The most familiar transcendental functions are:
I the logarithm,
I the exponential (with any non-trivial base),
I the trigonometric,
I the hyperbolic functions,
I and the inverses of all of these.

I Less familiar are:
I The special functions of analysis, such as the gamma, elliptic, and zeta

functions, all of which are transcendental.
I The generalized hypergeometric and Bessel functions are transcendental

in general, but algebraic for some special parameter values.

WIKIPEDIA, Transcendental function
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f(x,γa)
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Flooded f(x,γa)
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Solution methods

1. Root-finding

2. Chebyshev interpolation

3. Interval arithmetics

4. Marching squares

5. . . .
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Root-finding, 3D
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Root-finding, cut
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Root-finding, DC
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Root-finding, limits

1. 0 < x < 1
lim

γa→+∞ x = 0.92741271

2. 1 < x < 1/
√
κ

lim
γa→0+

x = 1.61245155

3. x > 1/
√
κ

lim
γa→0+

x =

{
J1(γax) = 0,[
γax J0

(√
κγax

)
− 2
√
κJ1

(√
κγax

)]
= 0.
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Root-finding, Algorithm

I Stepping in γa,

I The guess for the first steps by means of the limit,

I The guess for the next steps by means of the extrapolation,

I Newton method,

I Parallel processing.

Disadvantages

I Root skip,

I Lazy (particularly for random γa),

I Need of differentiation (Newton method).

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 11 / 47



Root-finding, Algorithm

I Stepping in γa,

I The guess for the first steps by means of the limit,

I The guess for the next steps by means of the extrapolation,

I Newton method,

I Parallel processing.

Disadvantages

I Root skip,

I Lazy (particularly for random γa),

I Need of differentiation (Newton method).

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 11 / 47



Chebyshev interpolation
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Chebyshev interpolation

% D e f i n e two f u n c t i o n s
f = chebfun (@( x ) s i n ( x . ˆ 2 )+s i n ( x ) . ˆ 2 , [ 0 , 1 0 ] ) ;
g = chebfun (@( x ) exp (−(x−5) . ˆ 2 / 1 0 ) , [ 0 , 1 0 ] ) ;

% Compute t h e i r i n t e r s e c t i o n s
r r = r o o t s ( f − g ) ;

% P l o t t h e f u n c t i o n s
p l o t ( [ f g ] ) , h o l d on

% P l o t t h e i n t e r s e c t i o n s
p l o t ( r r , f ( r r ) , ’ o ’ )
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Chebyshev interpolation

Solve-the-proxy methods in one unknown:

Approximation Name

Piecewise linear interpolation Make-a-Graph-Stupid algorithm
Linear Taylor series Newton–Raphson iteration
Linear interpolant secant iteration

Quadratic Taylor series Cauchy’s method
Quadratic interpolant Muller’s method

Inverse quadratic interpolant Brent’s algorithm
(Linear-over-linear) Padé approximant Halley’s scheme

(Quadratic-over-quadratic) Padé approximant Shafer’s method
Chebyshev polynomial interpolant Chebyshev proxy method

J.P. Boyd: Finding the Zeros of a Univariate Equation, SIAM Rev., 55(2)
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The Runge’s phenomenon
I Problem of oscillation at the edges of an interval that occurs when using

polynomial interpolation with polynomials of high degree over a set of
equispaced interpolation points.
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Chebyshev polynomials of the first kind, I

I The recurrence relation

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x).

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1
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Chebyshev polynomials of the first kind, II

I Trigonometric definition

Tn(x) = cos(n arccos x) = cosh(n arcosh x)

I Roots
n different simple roots, called Chebyshev roots, in the interval [−1, 1].

xk = cos

(
2k− 1

2n
π

)
, k = 1, . . . ,n

I Extrema
xk = cos

(
k
n
π
)

, k = 0, . . . ,n

All of the extrema have values that are either −1 or 1.
Extrema at the endpoints, given by:

Tn(1) = 1

Tn(−1) = (−1)n
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Chebyshev polynomials of the first kind, III
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Chebyshev interpolation

I Basic idea:
Represent functions using interpolants through (suitably rescaled) Chebyshev
nodes

xj = − cos

(
jπ

n

)
, 0 6 j 6 n.

I Such interpolants have excellent approximation properties.

I Interpolants are constructed adaptively, more and more points used, until
coefficients in Chebyshev series fall below machine precision.
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Chebyshev-proxy rootfinder
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Chebyshev interpolation, Algorithm I

1. Choose the following:

1.1 γa

1.2 Search interval, x ∈ [a,b].
The search interval must be chosen by physical and mathematical analysis of
the individual problem. The choice of the search interval [a,b] depends on the
user’s knowledge of the physics of his/her problem, and no general rules are
possible.

1.3 The number of grid points, N.
N may be chosen by setting N = 1 + 2m and the increasing N until the
Chebyshev series displays satisfactory convergence. To determine when N is
sufficiently high, we can examine the Chebyshev coefficients aj, which
decrease exponentially fast with j.

2. Compute a Chebyshev series, including terms up to and including TN, on the
interval x ∈ [a,b].

2.1 Create the interpolation points (Lobatto grid):

xk ≡
b− a

2
cos

(
π
k

N

)
+
b+ a

2
, k = 0, 1, 2, . . . ,N.
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Chebyshev interpolation, Algorithm II

2.2 Compute the elements of the (N+ 1)× (N+ 1) interpolation matrix.
Define pj = 2 if j = 0 or j = N and pj = 1, j ∈ [1,N− 1]. Then the elements
of the interpolation matrix are

Ijk =
2

pjpkN
cos

(
jπ
k

N

)
.

2.3 Compute the grid-point values of f(x), the function to be approximated:

fk ≡ f(xk), k = 0, 1, . . . ,N.

2.4 Compute the coefficients through a vector-matrix multiply:

aj =

N∑
k=0

Ijkfk, j = 0, 1, 2, . . . ...,N.

The approximation is

fN ≈
N∑
j=0

ajTj

(
2x− (b+ a)

b− a

)
=

N∑
j=0

aj cos

{
j arccos

(
2x− (b+ a)

b− a

)}
.
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Chebyshev interpolation, Algorithm III

3. Compute the roots of fN as eigenvalues of the Chebyshev–Frobenius matrix.
Frobenius showed that the roots of a polynomial in monomial form are also
the eigenvalues of the matrix which is now called the Frobenius companion
matrix. Day and Romero developed a general formalism for deriving the
Frobenius matrix for any set of orthogonal polynomials.

4. Refine the roots by a Newton iteration with f(x) itself.
Once a good approximation to a root is known, it is common to polish the
root to close to machine precision by one or two Newton iterations.
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Chebyshev interpolation, Numerical experiments

I ApproxFun (Julia package)

URL: github.com/ApproxFun/ApproxFun.jl.git

I CHEBFUN (MATLAB toolbox)

Driscoll, T.A., Hale, N., Trefethen, L.N., editors, Chebfun Guide,
Pafnuty Publications, Oxford, 2014.
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Arbitrary precision computations

Evaluate

f(x,y) = (333.75 − x2)y6 + x2(11x2y2 − 121y4 − 2) + 5.5y8 + x/(2y)

at (77617, 33096).

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .

Taschini, S.: Interval Arithmetic: Python Implementation and Applications.
In the Proceedings of the 7th Python in Science Conference (SciPy 2008).

Rump, S.M.: Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica 19:287-449, 2010.
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Multiprecision interval arithmetic

from sympy . mpmath i m p o r t i v
p r i n t ’ u s i n g 35 d e c i m a l p l a c e s . . . ’
i v . dps = 35
i v f = lambda x , y : ( i v . mpf ( ’ 3 3 3 . 7 5 ’ ) \
− x∗∗ 2) ∗y∗∗6 \
+ x∗∗2∗ ( i v . mpf ( ’ 1 1 ’ ) ∗x∗∗2∗y∗∗2 \
− i v . mpf ( ’ 1 2 1 ’ ) ∗y∗∗4 − i v . mpf ( ’ 2 ’ ) ) \
+ i v . mpf ( ’ 5 . 5 ’ ) ∗y∗∗8 + x /( i v . mpf ( ’ 2 ’ ) ∗y ) ;
i v a = i v . mpf ( s t r ( a ) )
i v b = i v . mpf ( s t r ( b ) )
i v z = i v f ( i v a , i v b )
p r i n t i v z

shows

u s i n g 35 d e c i m a l p l a c e s . . .
[ −6.827396059946821368141165095479816292382 , \
1.172603940053178631858834904520183709123]
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p r i n t ’ u s i n g 36 d e c i m a l p l a c e s . . . ’
i v . dps = 36
. . .

shows

u s i n g 36 d e c i m a l p l a c e s . . .
[ −0.82739605994682136814116509547981629200549 , \
−0.82739605994682136814116509547981629181741]

= −(0.82739605994682136814116509547981629200549
181741)

width of interval = upper bound on error
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Interval Analysis

Computing with intervals began:
Bounding rounding and truncation errors in finite precision arithmetic
Ramon Moore, 1966, Interval Analysis

One of Methods of Representing Uncertainty.

Uncertain parameters are described by an upper and lower bound,
then rigorous bounds on the response are computed using

interval arithmetic
and

interval functions.

Moore, R. E.: Interval analysis.
Prentice-Hall series in automatic computation.
Englewood Cliffs, N.J.: Prentice-Hall, 1966.
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Interval Arithmetic
Upper and Lower bound

[a,b] = x|a 6 x 6 b

Midpoint and Radius
[x0, r] = x|x0 − r 6 x 6 x0 + r

Degenerate Interval - Scalar
x = [a,a]

Width
w([a,b]) = b− a

Magnitude
|[a,b]| = max(|a|, |b|)

Midpoint
mid([a,b]) = (a+ b)/2

Equality
[a,b] = [c,d]⇐⇒ a = b, c = d

Ordering
[a,b] < [c,d]⇐⇒ b < c
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Interval Arithmetic

Addition
[a,b] + [c,d] = [a+ c,b+ d]

Subtraction
[a,b] − [c,d] = [a− d,b− c]

Multiplication

[a,b]× [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

Division

[a,b]÷ [c,d] = [a,b]×
[

1

d
,

1

c

]
provided [c,d] does not contain 0
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Theorem (Ratz, 1996)

Let 〈a,b〉 and 〈c,d〉 be two non-empty bounded real intervals.
Then

〈a,b〉 ÷ 〈c,d〉 =



〈a,b〉 × 〈1/d, 1/c〉 if 0 6∈ 〈c,d〉
〈−∞,∞〉 if 0 ∈ 〈a,b〉∧ 0 ∈ 〈c,d〉
〈b/c,∞〉 if b < 0 ∧ c < d = 0
〈−∞,b/d〉 ∪ 〈b/c,∞〉 if b < 0 ∧ c < 0 < d
〈−∞,b/d〉 if b < 0 ∧ 0 = c < d
〈−∞,a/c〉 if 0 < a∧ c < d = 0
〈−∞,a/c〉 ∪ 〈a/d,∞〉 if 0 < a∧ c < 0 < d
〈a/d,∞〉 if 0 < a∧ 0 = c < d
∅ if 0 6∈ 〈a,b〉∧ c = d = 0

Ratz, D.: On extended interval arithmetic and inclusion isotonicity. Institut
für Angewandte Mathematik, Universität Karlsruhe, 1996.
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Anomalies in Interval Arithmetic

Subdistributivity

[a,b]× ([c,d]± [e, f]) ⊆ [a,b]× [c,d]± [a,b]× [e, f]

Subcancelation
[a,b] − [c,d] ⊆ ([a,b] + [e, f]) − ([c,d] + [e, f])

[a,b]÷ [c,d] ⊆ ([a,b]× [e, f])÷ ([c,d]× [e, f])

0 ∈ [a,b] − [a,b]

1 ∈ [a,b]÷ [a,b]
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Images of Functions

Monotone functions If f(x) : x→ R is non-decreasing, then

f([a,b]) = [f(a), f(b)].

Examples:

exp([a,b]) = [exp(a), exp(b)]

log([a,b]) = [log(a), log(b)]

Some basic functions Images x2, sin(x), . . ., are easily calculated, too.

Example:

[a,b]2 =

{ [
min(a2,b2), max(a2,b2)

]
, if 0 6∈ [a,b],[

0, max(a2,b2)
]

, otherwise.

More complex functions Bessel, . . .
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Goal of Interval Computation

To compute the SHARPEST possible interval solution set
which COMPLETELY CONTAINS the true solution set.

Rigor is easy to accomplish - [−∞,∞] always true but useless

Tight solutions are difficult - primarily due to dependence
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The Dependence Problem

Interval arithmetic implicitly assumes
each occurrence of a variable is independent.

Example: Compute X2 without the power rules where X = [−1, 2].

X2 = X× X = [min(−2, 1, 4), max(−2, 1, 4)] = [−2, 4]

The answer should be X2 = [0, 4]

⇓

The excess width is know as the dependence problem.

If an interval variable appears only once in an expression
no widening of the interval occurs.
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Solving the Dependence Problem

1. Analytically rewrite expressions to minimize
the number of times a variable occurs.

2. Delay interval computations as late as possible

3. Reduce dependencies computationally
(e.g. with automatic differentiation)
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Programming with Intervals

I Matlab

I INTLAB - pure Matlab

I interval arithmetic with real and complex data including scalars, vectors,
matrices and sparse matrices

I automatic differentiation
I rigorous interval standard functions
I rigorous input and output
I multiple precision interval arithmetic

I b4m - uses C interval library, BIAS

I C/C++ and Fortran 77/90 - BIAS, PROFIL, C-XSC, INTLIB, GlobSol

I Python - interval, mpmath(iv)

I Julia - ValidatedNumerics.jl, Intervals.jl

I Maple - intpak, intpakX

I Mathematica
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Interval Newton Method

I

Na

Na ∩ I
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Interval Newton Method

I

Na1 Na2

Na1 ∩ I
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Interval Newton Method

I

Na1 Na2

Na1 ∩ I Na2 ∩ I
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Automatic Differentiation (AD)

- is a set of techniques based on the mechanical application of the chain rule
to obtain derivatives of a function given as a computer program.

AD exploits the fact that every computer program, no matter how complicated,
executes a sequence of elementary arithmetic operations such as additions or
elementary functions such as exp(). By applying the chain rule of derivative
calculus repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, and accurate to working precision.

Conceptually, AD is different from symbolic differentiation and approximations
by divided differences.

AD is used in the following areas:

I Numerical Methods

I Sensitivity Analysis

I Design Optimization

I Data Assimilation & Inverse Problems
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f(x1, x2) = x1x2 + sin(x1)

By Berland at en.wikipedia [Public domain], from Wikimedia Commons

Hora (IT AS CR) Root-finding methods for solving dispersion equations IM 2016 43 / 47



f u n c t i o n [ hodnota ] = DispRov3 (GammaD, Zeta , P o i s s o n )

hodnota=NaN ;

w h i l e 1

k=(1−2∗P o i s s o n ) /(2∗(1−P o i s s o n ) ) ;

GammaD=s c a l 2 m a t r (GammaD, Zeta ) ;
Zeta=s c a l 2 m a t r ( Zeta ,GammaD) ;

i f ( s i z e (GammaD)==s i z e ( Zeta ) )
hodnota=hodnota .∗ones ( s i z e (GammaD) ) ;

e l s e
d i s p ( ’GammaD a Zeta mus ı́ m ı́t s t e j n o u v e l i k o s t ’ )
b r e a k

end

i f ( a l l ( a l l (GammaD>=0)) && a l l ( a l l ( Zeta>=0)) )
Zeta ( ˜ ( Zeta>=(1/ s q r t ( k ) ) ) )=NaN ; %Hodnoty p ř e s a h u j ı́ c ı́ vymezený obor hodnot j s o u i g n o r o v á n y .

hodnota=(Zeta .ˆ2−2) . ˆ 2 .∗ s i n (GammaD.∗s q r t ( Zeta .ˆ2−1) ) .∗cos (GammaD.∗s q r t ( k .∗Zeta .ˆ2−1) )
+4.∗s q r t ( Zeta .ˆ2−1) .∗s q r t ( k .∗Zeta .ˆ2−1) .∗cos (GammaD.∗s q r t ( Zeta .ˆ2−1) ) .∗ s i n (GammaD.∗s q r t ( k .∗Zeta

.ˆ2−1) ) ;
e l s e

d i s p ( ’GammaD a Zeta mus ı́ b ý t m a t i c e k l a d n ý c h r e á l n ý c h č ı́ s e l ( i n t e r v a l ů ) ’ )
b r e a k

end

b r e a k
end
end
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Marching Squares

- is a computer graphics algorithm that generates contours for a two-dimensional
scalar field (rectangular array of individual numerical values).

Typical applications include the Contour lines on topographic maps
or the generation of isobars for weather maps.

The algorithm is embarrassingly parallel,
because all cells are processed independently.

WIKIPEDIA, Marching Squares
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Thank you for your attention!

Any questions?

The work was supported by the institutional support RVO: 61388998.
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