THE ROOT-FINDING OF DISPERSION CURVES IN A BAR IMPACT PROBLEM

Petr Hora

Institute of Thermomechanics AS CR, v. v. i. Prague, Czech Republic

COMPUTATIONAL MECHANICS 2015

November 9 – 11, 2015 Špičák, Czech Republic

Motivation: Bar impact problem

To calculate the stress wave propagation in a bar impact problem it is used the integration along the dispersion curves.

This dispersion relations $f(x, \gamma a)$ is defined as

$$(2-x^{2})^{2} J_{0}(\gamma a A) J_{1}(\gamma a B) + 4ABJ_{1}(\gamma a A) J_{0}(\gamma a B) - \frac{2x^{2}}{\gamma a}AJ_{1}(\gamma a A) J_{1}(\gamma a B) = 0,$$

where

- $\boldsymbol{\alpha}~$ radius of the semi-infinite bar,
- γ wavenumber,
- $\boldsymbol{\chi}$ the ratio of the phase velocity and the shear wave velocity,
- $\boldsymbol{\kappa}$ the ratio of the squares of the phase velocities,

A
$$\sqrt{\kappa x^2 - 1}$$
,

B
$$\sqrt{x^2-1}$$
,

 ${\sf J}\,$ the Bessel function of the first kind.

Hora (IT AS CR)

Transcendental equations

- ► A transcendental equation is an equation containing a transcendental function of the variable(s) being solved for.
- ► The most familiar transcendental functions are:
 - the logarithm,
 - the exponential (with any non-trivial base),
 - ▶ the trigonometric,
 - the hyperbolic functions,
 - and the inverses of all of these.
- Less familiar are:
 - ► The special functions of analysis, such as the gamma, elliptic, and zeta functions, all of which are transcendental.
 - The generalized hypergeometric and Bessel functions are transcendental in general, but algebraic for some special parameter values.

WIKIPEDIA, Transcendental function

$f(x, \gamma a)$

Flooded $f(x, \gamma a)$

Solution methods

- 1. Root-finding
- 2. Interval arithmetics
- 3. Chebyshev interpolation
- 4. Marching squares
- 5. Marching triangles
- б. ...

Root-finding, 3D

Root-finding, cut

Root-finding, DC

Root-finding, limits

1. 0 < x < 1 $y_{\alpha \to +\infty} = 0.92741271$ 2. $1 < x < 1/\sqrt{\kappa}$ $\lim_{\gamma \alpha \to 0_+} x = 1.61245155$ 3. $x > 1/\sqrt{\kappa}$

$$\lim_{\gamma a \to 0_{+}} x = \begin{cases} J_{1}(\gamma a x) = 0, \\ [\gamma a x J_{0}(\sqrt{\kappa} \gamma a x) - 2\sqrt{\kappa} J_{1}(\sqrt{\kappa} \gamma a x)] = 0. \end{cases}$$

Root-finding, Algorithm

- Stepping in γa,
- The guess for the first steps by means of the limit,
- ▶ The guess for the next steps by means of the extrapolation,
- Newton method,
- Parallel processing.

Root-finding, Algorithm

- Stepping in γa,
- The guess for the first steps by means of the limit,
- ▶ The guess for the next steps by means of the extrapolation,
- Newton method,
- Parallel processing.

Disadvantages

- Root skip,
- Lazy (particularly for random $\gamma \alpha$),
- Need of differentiation (Newton method).


```
% Define two functions
f = chebfun(@(x) sin(x.^2)+sin(x).^2, [0,10]);
g = chebfun(@(x) exp(-(x-5).^2/10), [0,10]);
% Compute their intersections
rr = roots(f - g);
% Plot the functions
plot([f g]), hold on
% Plot the intersections
plot(rr, f(rr), 'o')
```

Solve-the-proxy methods in one unknown:

Approximation	Name
Piecewise linear interpolation	Make-a-Graph-Stupid algorithm
Linear Taylor series	Newton–Raphson iteration
Linear interpolant	secant iteration
Quadratic Taylor series	Cauchy's method
Quadratic interpolant	Muller's method
Inverse quadratic interpolant	Brent's algorithm
(Linear-over-linear) Padé approximant	Halley's scheme
(Quadratic-over-quadratic) Padé approximant	Shafer's method
Chebyshev polynomial interpolant	Chebyshev proxy method

📡 J.P. Boyd: Finding the Zeros of a Univariate Equation, SIAM Rev., 55(2)

The Runge's phenomenon

Problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

The Runge's phenomenon

Problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

Chebyshev polynomials of the first kind, I

► The recurrence relation

$$\begin{split} T_0(x) &= 1, \\ T_1(x) &= x, \\ T_{n+1}(x) &= 2xT_n(x) - T_{n-1}(x). \end{split}$$

$$\begin{array}{rcl} T_0(x) &=& 1\\ T_1(x) &=& x\\ T_2(x) &=& 2x^2-1\\ T_3(x) &=& 4x^3-3x\\ T_4(x) &=& 8x^4-8x^2+1\\ T_5(x) &=& 16x^5-20x^3+5x\\ T_6(x) &=& 32x^6-48x^4+18x^2-1 \end{array}$$

Chebyshev polynomials of the first kind, II

Trigonometric definition

$$\mathsf{T}_n(x) = \mathsf{cos}(n \operatorname{\mathsf{arccos}} x) = \mathsf{cosh}(n \operatorname{\mathsf{arcosh}} x)$$

Roots

n different simple roots, called Chebyshev roots, in the interval [-1, 1].

$$x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$
, $k = 1, \dots, n$

Extrema

$$x_k = \cos\left(rac{k}{n}\pi
ight)$$
 , $k = 0, \ldots$, n

All of the extrema have values that are either -1 or 1. Extrema at the endpoints, given by:

$$T_n(1) = 1$$

 $T_n(-1) = (-1)^n$

Hora (IT AS CR)

Chebyshev polynomials of the first kind, III

Basic idea:

Represent functions using interpolants through (suitably rescaled) Chebyshev nodes

$$x_{j}=-\cos\left(\frac{j\pi}{n}\right),\qquad 0\leqslant j\leqslant n.$$

- Such interpolants have excellent approximation properties.
- Interpolants are constructed adaptively, more and more points used, until coefficients in Chebyshev series fall below machine precision.

Chebyshev-proxy rootfinder

Chebyshev interpolation, Algorithm I

1. Choose the following:

- 1.1 γa
- 1.2 Search interval, $x \in [a, b]$.

The search interval must be chosen by physical and mathematical analysis of the individual problem. The choice of the search interval [a, b] depends on the user's knowledge of the physics of his/her problem, and no general rules are possible.

 $1.3\,$ The number of grid points, N.

N may be chosen by setting $N=1+2^m$ and the increasing N until the Chebyshev series displays satisfactory convergence. To determine when N is sufficiently high, we can examine the Chebyshev coefficients a_j , which decrease exponentially fast with j.

- 2. Compute a Chebyshev series, including terms up to and including T_N , on the interval $x \in [a,b].$
 - 2.1 Create the interpolation points (Lobatto grid):

$$x_k \equiv \frac{b-a}{2} \cos\left(\pi \frac{k}{N}\right) + \frac{b+a}{2}, \quad k = 0, 1, 2, \dots, N.$$

Hora (IT AS CR)

Chebyshev interpolation, Algorithm II

2.2 Compute the elements of the $(N + 1) \times (N + 1)$ interpolation matrix. Define $p_j = 2$ if j = 0 or j = N and $p_j = 1, j \in [1, N - 1]$. Then the elements of the interpolation matrix are

$$I_{jk} = \frac{2}{p_j p_k N} \cos\left(j\pi \frac{k}{N}\right). \label{eq:link}$$

2.3 Compute the grid-point values of f(x), the function to be approximated:

$$f_k \equiv f(x_k), \quad k = 0, 1, \dots, N.$$

2.4 Compute the coefficients through a vector-matrix multiply:

$$a_j = \sum_{k=0}^N I_{jk} f_k, \quad j=0,1,2,\ldots,N. \label{eq:ajk}$$

The approximation is

$$f_N \approx \sum_{j=0}^N \alpha_j T_j \left(\frac{2x - (b+a)}{b-a} \right) = \sum_{j=0}^N \alpha_j \cos \left\{ j \, \text{arccos} \left(\frac{2x - (b+a)}{b-a} \right) \right\}.$$

Hora (IT AS CR)

The root-finding of dispersion curves in a bar impact problem

Chebyshev interpolation, Algorithm III

- 3. Compute the roots of f_N as eigenvalues of the Chebyshev–Frobenius matrix. Frobenius showed that the roots of a polynomial in monomial form are also the eigenvalues of the matrix which is now called the *Frobenius companion matrix*. Day and Romero developed a general formalism for deriving the *Frobenius matrix* for any set of orthogonal polynomials.
- Refine the roots by a Newton iteration with f(x) itself.
 Once a good approximation to a root is known, it is common to *polish* the root to close to machine precision by one or two Newton iterations.

Chebyshev interpolation, Numerical experiments

ApproxFun (Julia package)

🔇 URL: github.com/ApproxFun/ApproxFun.jl.git

CHEBFUN (MATLAB toolbox)

Driscoll, T.A., Hale, N., Trefethen, L.N., editors, Chebfun Guide, Pafnuty Publications, Oxford, 2014.

Thank you for your attention!

Any questions?

The work was supported by the institutional support RVO: 61388998.

Hora (IT AS CR)

Contents

Motivation

Transcendental equations

Solution methods

Root-finding

Chebyshev interpolation