THE USE OF THE CHEBYSHEV INTERPOLATION IN ELASTODYNAMICS PROBLEMS

Petr Hora
Institute of Thermomechanics AS CR, v. v. i.
Prague, Czech Republic

COMPUTATIONAL MECHANICS 2016
October 31 - November 2, 2016
Špičák, Czech Republic

Motivation

Q Valeš, F., Podélný ráz polonekonečných válcových elastických tyčí kruhového průřezu, part I (Z681/79) and II (Z839/83), ÚT AVČR Praha, (in Czech).

$$
\int_{0}^{\infty} \frac{\left(2-\xi^{2}\right) J_{1}(r \gamma a B) J_{1}(\gamma a A)-2 J_{1}(\gamma a B) J_{1}(r \gamma a A)}{\gamma a \xi B M} \cos (z \gamma a) \sin (t \xi \gamma a) d \gamma a,
$$

where

$$
\begin{aligned}
M= & -\gamma a^{2}\left(\left(2-\xi^{2}\right)^{2} / A+4 \kappa A\right) J_{0}(\gamma a B) J_{0}(\gamma a A) \\
& +\gamma a\left(\left(2-\xi^{2}\right)\left(4+\left(2-\xi^{2}\right) /\left(\xi^{2}-1\right)\right)+2 \kappa \xi^{2}\right) J_{0}(\gamma a B) J_{1}(\gamma a A) \\
& -2 \gamma a\left(2-\xi^{2}\right) B / A J_{1}(\gamma a B) J_{0}(\gamma a A) \\
& +\left(2 B\left(2 \gamma a^{2}-\left(2-\xi^{2}\right) /\left(\xi^{2}-1\right)\right)+\kappa \gamma a^{2}\left(2-\xi^{2}\right)^{2} / B\right) J_{1}(\gamma a B) J_{1}(\gamma a A),
\end{aligned}
$$

a radius of the semi-infinite bar,
γ wavenumber,
ξ the ratio of the phase velocity and the shear wave velocity, $\xi(\gamma \mathrm{a})$,
k the ratio of the squares of the phase velocities,
A $\sqrt{\kappa \xi^{2}-1}$,
B $\sqrt{\xi^{2}-1}$,
J the Bessel function of the first kind.

Dispersion curves $(\xi-\gamma \mathrm{a})$

The dispersion relations $f(\xi, \gamma)$) is defined as

$$
\left(2-\xi^{2}\right)^{2} J_{0}(\gamma a A) J_{1}(\gamma a B)+4 A B J_{1}(\gamma a A) J_{0}(\gamma a B)-\frac{2 \xi^{2}}{\gamma a} A J_{1}(\gamma a A) J_{1}(\gamma a B)=0
$$

where
a radius of the semi-infinite bar,
γ wavenumber,
ξ the ratio of the phase velocity and the shear wave velocity,
K the ratio of the squares of the phase velocities,
A $\sqrt{\kappa \xi^{2}-1}$,
B $\sqrt{\xi^{2}-1}$,
J the Bessel function of the first kind.

Dispersion curves $(\xi-\gamma \mathrm{a})$

$$
\mu=0.3, d c=10, r=0.5, z=1, t=1
$$

$$
\mu=0.3, d c=10, r=0.5, z=10, t=1
$$

$$
\mu=0.3, d c=1, r=0.5, z=1, t=1
$$

Current calculation method

- For the purpose of the speed up calculation, the dispersion curves are precalculated in equidistant points of γ a For example: $\gamma \mathrm{a}_{\min }=0.001, \gamma \mathrm{a}_{\text {max }}=500, \Delta \gamma \mathrm{a}=0.001$.
- Method for numerical integration: Simpson's rule (points are equally spaced).

The disadvantages of this process are:

1. impossibility to integrate from zero,
2. problematic choice of $\Delta \gamma \mathrm{a}$.

The proposed methodology for calculating

- In order to remove the first restriction, another form of the dispersion relations is used.
- In order to remove the second restriction, the integration method with unequally spaced points is used. For non-periodic functions, methods with unequally spaced points such as Gaussian quadrature and Clenshaw-Curtis quadrature are generally far more accurate.
For using of these integration methods, the dispersion curves were approximated by the Chebyshev polynomials.

Dispersion curves $(\zeta-\gamma a)$

After making the substitution, $\zeta=\xi \gamma \mathrm{a}$, the dispersion relation $\mathrm{g}(\zeta, \gamma \mathrm{a})$ is defined as

$$
\left(2 \gamma a^{2}-\zeta^{2}\right)^{2} J_{0}(C) J_{1}(D)+4 \gamma a^{2} C D J_{1}(C) J_{0}(D)-2 \zeta^{2} C J_{1}(C) J_{1}(D)=0,
$$

where
a radius of the semi-infinite bar,
γ wavenumber,
ζ normalized angular frequency, $\xi \gamma \mathrm{a}$,
K the ratio of the squares of the phase velocities,
C $\sqrt{\kappa \zeta^{2}-\gamma a^{2}}$,
D $\sqrt{\zeta^{2}-\gamma a^{2}}$,
J the Bessel function of the first kind.

Dispersion curves $(\zeta-\gamma \mathrm{a})$

Chebyshev interpolation

Chebyshev interpolation

```
% Define two functions
f = chebfun(@(x) sin(x.^2)+\operatorname{sin}(x).^2, [0,10]);
g=chebfun(@(x) exp(-(x-5).^2/10), [0,10]);
% Compute their intersections
rr = roots(f - g);
% Plot the functions
plot([f g]), hold on
% Plot the intersections
plot(rr, f(rr), 'o')
```


The Runge's phenomenon

- Problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

The Runge's phenomenon

- Problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

Chebyshev polynomials of the first kind, I

- The recurrence relation

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x, \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x) .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}_{0}(x) & =1 \\
\mathrm{~T}_{1}(x) & =x \\
\mathrm{~T}_{2}(x) & =2 x^{2}-1 \\
\mathrm{~T}_{3}(x) & =4 x^{3}-3 x \\
\mathrm{~T}_{4}(x) & =8 x^{4}-8 x^{2}+1 \\
\mathrm{~T}_{5}(x) & =16 x^{5}-20 x^{3}+5 x \\
\mathrm{~T}_{6}(x) & =32 x^{6}-48 x^{4}+18 x^{2}-1
\end{aligned}
$$

Chebyshev polynomials of the first kind, II

- Trigonometric definition

$$
T_{n}(x)=\cos (n \arccos x)=\cosh (n \operatorname{arcosh} x)
$$

- Roots n different simple roots, called Chebyshev roots, in the interval $[-1,1]$.

$$
x_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1, \ldots, n
$$

- Extrema

$$
x_{k}=\cos \left(\frac{k}{n} \pi\right), \quad k=0, \ldots, n
$$

All of the extrema have values that are either -1 or 1 .
Extrema at the endpoints, given by:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}}(1) & =1 \\
\mathrm{~T}_{\mathrm{n}}(-1) & =(-1)^{\mathrm{n}}
\end{aligned}
$$

Chebyshev polynomials of the first kind, III
$\square 0-4-3-5$

Chebyshev interpolation

- Basic idea: Represent functions using interpolants through (suitably rescaled) Chebyshev nodes

$$
x_{j}=-\cos \left(\frac{j \pi}{n}\right), \quad 0 \leqslant j \leqslant n
$$

- Such interpolants have excellent approximation properties.
- Interpolants are constructed adaptively, more and more points used, until coefficients in Chebyshev series fall below machine precision.

Chebyshev interpolation, Algorithm I

1. Choose the following:
$1.1 \gamma \mathrm{a}$
1.2 Search interval, $x \in[a, b]$.

The search interval must be chosen by physical and mathematical analysis of the individual problem. The choice of the search interval [a, b] depends on the user's knowledge of the physics of his/her problem, and no general rules are possible.
1.3 The number of grid points, N .
N may be chosen by setting $N=1+2^{m}$ and the increasing N until the Chebyshev series displays satisfactory convergence. To determine when N is sufficiently high, we can examine the Chebyshev coefficients a_{j}, which decrease exponentially fast with j.
2. Compute a Chebyshev series, including terms up to and including T_{N}, on the interval $x \in[a, b]$.
2.1 Create the interpolation points (Lobatto grid):

$$
x_{k} \equiv \frac{b-a}{2} \cos \left(\pi \frac{k}{N}\right)+\frac{b+a}{2}, \quad k=0,1,2, \ldots, N
$$

Chebyshev interpolation, Algorithm II

2.2 Compute the elements of the $(N+1) \times(N+1)$ interpolation matrix. Define $p_{j}=2$ if $j=0$ or $j=N$ and $p_{j}=1, j \in[1, N-1]$. Then the elements of the interpolation matrix are

$$
I_{j k}=\frac{2}{p_{j} p_{k} N} \cos \left(j \pi \frac{k}{N}\right)
$$

2.3 Compute the grid-point values of $f(x)$, the function to be approximated:

$$
f_{k} \equiv f\left(x_{k}\right), \quad k=0,1, \ldots, N
$$

2.4 Compute the coefficients through a vector-matrix multiply:

$$
a_{j}=\sum_{k=0}^{N} I_{j k} f_{k}, \quad j=0,1,2, \ldots \ldots, N .
$$

The approximation is

$$
f_{N} \approx \sum_{j=0}^{N} a_{j} T_{j}\left(\frac{2 x-(b+a)}{b-a}\right)=\sum_{j=0}^{N} a_{j} \cos \left\{j \arccos \left(\frac{2 x-(b+a)}{b-a}\right)\right\} .
$$

Chebyshev interpolation, resources

- CHEBFUN (MATLAB toolbox)

Driscoll, T.A., Hale, N., Trefethen, L.N., editors, Chebfun Guide, Pafnuty Publications, Oxford, 2014.

- ApproxFun (Julia package)
(2) URL: github.com/ApproxFun/ApproxFun.jl.git
- pychebfun (Python implementation of chebfun)

URL: github.com/olivierverdier/pychebfun

The Chebyshev approximation properties for any dispersion curves $(\zeta-\gamma a)$

Curve \#	Vertical scale	Length (splitting=off)	Length (splitting=on)
1	93	396	168
2	100	454	218
3	100	455	209
10	100	1821	301
20	120	4226	597
30	140	6527	729

Compression 100 curves for γ a from 0.001 to 100 with step 0.001 take the 80 MB file.
100 curves for $\gamma \mathrm{a}$ from $\mathbf{0}$ to 100 created by the Chebyshev approximation take only the 1.3 MB file.
Speed-up While using the Gaussian quadrature, the calculation time has provided a 100 x speedup over the original.

Thank you for your attention!

Any questions?

The work was supported by the institutional support RVO: 61388998.

Contents

Motivation

Dispersion curves $(\xi-\gamma$ a)
Current calculation method
The proposed methodology for calculating
Dispersion curves $(\zeta-\gamma \mathrm{a})$
Chebyshev interpolation

