THE USE OF THE CHEBYSHEV INTERPOLATION IN ELASTODYNAMICS PROBLEMS

Petr Hora

Institute of Thermomechanics AS CR, v. v. i. Prague, Czech Republic

COMPUTATIONAL MECHANICS 2016

October 31 – November 2, 2016 Špičák, Czech Republic

Motivation

Valeš, F., Podélný ráz polonekonečných válcových elastických tyčí kruhového průřezu, part I (Z681/79) and II (Z839/83), ÚT AVČR Praha, (in Czech).

$$\int_{0}^{\infty} \frac{(2-\xi^2) J_1(r \gamma a B) J_1(\gamma a A) - 2 J_1(\gamma a B) J_1(r \gamma a A)}{\gamma a \, \xi \, B \, M} \cos(z \, \gamma a) \sin(t \, \xi \, \gamma a) \, d\gamma a,$$

where

$$\begin{split} M = & -\gamma a^2 \left((2-\xi^2)^2/A + 4 \,\kappa\,A \right) J_0(\gamma a\,B) \,J_0(\gamma a\,A) \\ & +\gamma a \left((2-\xi^2) \left(4 + (2-\xi^2)/(\xi^2-1) \right) + 2 \,\kappa\,\xi^2 \right) J_0(\gamma a\,B) \,J_1(\gamma a\,A) \\ & -2 \,\gamma a \left(2-\xi^2 \right) B/A \,J_1(\gamma a\,B) \,J_0(\gamma a\,A) \\ & + (2 \,B \,(2 \,\gamma a^2 - (2-\xi^2)/(\xi^2-1)) + \kappa\,\gamma a^2 \,(2-\xi^2)^2/B) \,J_1(\gamma a\,B) \,J_1(\gamma a\,A), \end{split}$$

a radius of the semi-infinite bar,

 γ wavenumber,

- ξ the ratio of the phase velocity and the shear wave velocity, $\xi(\gamma a)$,
- $\boldsymbol{\kappa}$ the ratio of the squares of the phase velocities,

$$A \sqrt{\kappa \xi^2 - 1}$$
,

B
$$\sqrt{\xi^2-1}$$
,

 ${\sf J}\,$ the Bessel function of the first kind.

Dispersion curves
$$(\xi - \gamma a)$$

The dispersion relations $f(\xi, \gamma a)$ is defined as

$$\left(2-\xi^2\right)^2 \mathsf{J}_0(\gamma a A) \, \mathsf{J}_1(\gamma a B) + 4 A B \mathsf{J}_1(\gamma a A) \, \mathsf{J}_0(\gamma a B) - \frac{2\xi^2}{\gamma a} A \mathsf{J}_1(\gamma a A) \, \mathsf{J}_1(\gamma a B) = 0,$$

where

- $\boldsymbol{\alpha}~$ radius of the semi-infinite bar,
- γ wavenumber,
- $\boldsymbol{\xi}$ the ratio of the phase velocity and the shear wave velocity,
- $\boldsymbol{\kappa}$ the ratio of the squares of the phase velocities,
- A $\sqrt{\kappa\xi^2-1}$,
- B $\sqrt{\xi^2-1}$,
- ${\sf J}\,$ the Bessel function of the first kind.

Dispersion curves
$$(\xi - \gamma a)$$

Hora (IT AS CR)

The use of the Chebyshev interpolation in elastodynamics problems

$$\mu = 0.3$$
, dc $= 10$, r $= 0.5$, $z = 1$, t $= 1$

$$\mu = 0.3$$
, dc $= 10$, r $= 0.5$, $z = 10$, t $= 1$

Current calculation method

- For the purpose of the speed up calculation, the dispersion curves are precalculated in equidistant points of γa
 For example: γa_{min} = 0.001, γa_{max} = 500, Δγa = 0.001.
- ▶ Method for numerical integration: Simpson's rule (points are equally spaced).

The disadvantages of this process are:

- 1. impossibility to integrate from zero,
- 2. problematic choice of $\Delta \gamma a$.

The proposed methodology for calculating

- In order to remove the first restriction, another form of the dispersion relations is used.
- In order to remove the second restriction,

the integration method with unequally spaced points is used. For non-periodic functions, methods with unequally spaced points such as *Gaussian quadrature* and *Clenshaw–Curtis quadrature* are generally far more accurate.

For using of these integration methods, the dispersion curves were approximated by **the Chebyshev polynomials**.

Dispersion curves $(\zeta - \gamma a)$

After making the substitution, $\zeta=\xi\gamma a,$ the dispersion relation $g(\zeta,\gamma a)$ is defined as

$$\left(2\gamma a^{2}-\zeta^{2}\right)^{2}J_{0}\left(C\right)J_{1}\left(D\right)+4\gamma a^{2}CDJ_{1}\left(C\right)J_{0}\left(D\right)-2\zeta^{2}CJ_{1}\left(C\right)J_{1}\left(D\right)=0,$$

where

- $\boldsymbol{\alpha}$ radius of the semi-infinite bar,
- γ wavenumber,
- ζ normalized angular frequency, $\xi\gamma a,$
- $\boldsymbol{\kappa}$ the ratio of the squares of the phase velocities,

$$C \sqrt{\kappa \zeta^2 - \gamma a^2}$$
,

$$\mathbb{D} \sqrt{\zeta^2 - \gamma a^2}$$
,

 ${\sf J}\,$ the Bessel function of the first kind.

Dispersion curves
$$(\zeta - \gamma a)$$

Hora (IT AS CR)

The use of the Chebyshev interpolation in elastodynamics problems

Chebyshev interpolation

Chebyshev interpolation

```
% Define two functions
f = chebfun(@(x) sin(x.^2)+sin(x).^2, [0,10]);
g = chebfun(@(x) exp(-(x-5).^2/10), [0,10]);
% Compute their intersections
rr = roots(f - g);
% Plot the functions
plot([f g]), hold on
% Plot the intersections
plot(rr, f(rr), 'o')
```

The Runge's phenomenon

Problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

The Runge's phenomenon

Problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

Hora (IT AS CR)

The use of the Chebyshev interpolation in elastodynamics problems

Chebyshev polynomials of the first kind, I

► The recurrence relation

$$\begin{split} T_0(x) &= 1, \\ T_1(x) &= x, \\ T_{n+1}(x) &= 2xT_n(x) - T_{n-1}(x). \end{split}$$

$$\begin{array}{rcl} T_0(x) &=& 1 \\ T_1(x) &=& x \\ T_2(x) &=& 2x^2-1 \\ T_3(x) &=& 4x^3-3x \\ T_4(x) &=& 8x^4-8x^2+1 \\ T_5(x) &=& 16x^5-20x^3+5x \\ T_6(x) &=& 32x^6-48x^4+18x^2-1 \end{array}$$

Chebyshev polynomials of the first kind, II

Trigonometric definition

$$\mathsf{T}_n(x) = \mathsf{cos}(n \operatorname{\mathsf{arccos}} x) = \mathsf{cosh}(n \operatorname{\mathsf{arcosh}} x)$$

Roots

n different simple roots, called Chebyshev roots, in the interval [-1, 1].

$$x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$
, $k = 1, \dots, n$

Extrema

$$x_k = \cos\left(rac{k}{n}\pi
ight)$$
 , $k = 0, \ldots$, n

All of the extrema have values that are either -1 or 1. Extrema at the endpoints, given by:

$$T_n(1) = 1$$

 $T_n(-1) = (-1)^n$

Chebyshev polynomials of the first kind, III

Chebyshev interpolation

Basic idea:

Represent functions using interpolants through (suitably rescaled) Chebyshev nodes

$$x_j = -\cos\left(\frac{j\pi}{n}\right)$$
, $0 \leqslant j \leqslant n$.

- Such interpolants have excellent approximation properties.
- Interpolants are constructed adaptively, more and more points used, until coefficients in Chebyshev series fall below machine precision.

Chebyshev interpolation, Algorithm I

1. Choose the following:

- 1.1 γa
- 1.2 Search interval, $x \in [a, b]$.

The search interval must be chosen by physical and mathematical analysis of the individual problem. The choice of the search interval [a, b] depends on the user's knowledge of the physics of his/her problem, and no general rules are possible.

1.3 The number of grid points, N.

N may be chosen by setting $N=1+2^m$ and the increasing N until the Chebyshev series displays satisfactory convergence. To determine when N is sufficiently high, we can examine the Chebyshev coefficients a_j , which decrease exponentially fast with j.

- 2. Compute a Chebyshev series, including terms up to and including T_N , on the interval $x \in [a,b].$
 - 2.1 Create the interpolation points (Lobatto grid):

$$x_k \equiv \frac{b-a}{2} \cos\left(\pi \frac{k}{N}\right) + \frac{b+a}{2}, \quad k=0,1,2,\ldots,N. \label{eq:xk}$$

Chebyshev interpolation, Algorithm II

2.2 Compute the elements of the $(N + 1) \times (N + 1)$ interpolation matrix. Define $p_j = 2$ if j = 0 or j = N and $p_j = 1, j \in [1, N - 1]$. Then the elements of the interpolation matrix are

$$I_{jk} = \frac{2}{p_j p_k N} \cos\left(j\pi \frac{k}{N}\right). \label{eq:Ijk}$$

2.3 Compute the grid-point values of f(x), the function to be approximated:

$$f_k \equiv f(x_k)$$
, $k = 0, 1, \dots, N$.

2.4 Compute the coefficients through a vector-matrix multiply:

$$a_j = \sum_{k=0}^N I_{jk} f_k, \quad j=0,1,2,\ldots,N. \label{eq:ajk}$$

The approximation is

$$f_N \approx \sum_{j=0}^N \alpha_j T_j \left(\frac{2x - (b+\alpha)}{b-\alpha} \right) = \sum_{j=0}^N \alpha_j \cos\left\{ j \arccos\left(\frac{2x - (b+\alpha)}{b-\alpha} \right) \right\}.$$

Hora (IT AS CR)

The use of the Chebyshev interpolation in elastodynamics problems

Chebyshev interpolation, resources

CHEBFUN (MATLAB toolbox)

📎 Driscoll, T.A., Hale, N., Trefethen, L.N., editors, Chebfun Guide, Pafnuty Publications, Oxford, 2014.

ApproxFun (Julia package)

URL: github.com/ApproxFun/ApproxFun.jl.git

pychebfun (Python implementation of chebfun)

🔇 URL: github.com/olivierverdier/pychebfun

The Chebyshev approximation properties for any dispersion curves $(\zeta - \gamma a)$

Curve $\#$	Vertical scale	Length (splitting=off)	Length (splitting=on)
1	93	396	168
2	100	454	218
3	100	455	209
10	100	1821	301
20	120	4226	597
30	140	6527	729

Compression 100 curves for γa from 0.001 to 100 with step 0.001 take the 80MB file. 100 curves for γa from **0** to 100 created by the Chebyshev approximation take only the 1.3MB file.

Speed-up While using the *Gaussian quadrature*, the calculation time has provided a 100x speedup over the original.

Thank you for your attention!

Any questions?

The work was supported by the institutional support RVO: 61388998.

Contents

Motivation Dispersion curves $(\xi - \gamma \alpha)$ Current calculation method The proposed methodology for calculating Dispersion curves $(\zeta - \gamma \alpha)$ Chebyshev interpolation