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EXPERIMENTAL VERIFICATION OF PHYSICAL MODELS
FOR A SOLID PHASE

Rudolf Brepta, Josef Hégr, Petr Hora

The results obtained by measuring eigenfrequencies of solid bodies are presented. The mea-
surements were carried out by electroacoustical impulse method. The bodies being investigated
were represented by a cylindrical wave guide, thin disc, thin ring and thick ring, each of the
bodies being made of structural steel. The results of measurements were compared with those
obtained through theoretical methods developed earlier. Maximum differences between experi-
ments and theory are of the order of a few per cent.
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1. INTRODUCTION

The paper gives comprehensive results of experimental verification of properties
of physical models (of continuum) for a solid phase. The electroacoustic impulse
method was used to find the initial region of a line spectrum of natural frequencies
of the body or set of bodies being investigated. By comparing the natural frequencies
obtained in this way with theoretical values we can verify the validity or the limits
of validity of the physical model employed to calculate the frequencies.,

To define the behaviour of the bodies under investigation, the model of a linear
elastic continuum for small deformations was used. By modelling the bodies made
of steel the model of continuum may be employed up to the frequencies of the order
of 100 MHz. The domain of frequencies being investigated was limited from above
by the frequencies 20— 30 kHz, which is far below the limit frequency.

On the one hand, we verified quite exact models (in the sense of the linear theory
of small deformations), on the other hand, simplified one-dimensional models were
investigated, such as, for instance, the model of a curved bar. For these, so-called,
approximate theories in particular, the impulse method is very efficient because it
can quickly yield the boundaries for the usefulness of these models.

The bodies being investigated are as follows:

a) cylindrical rod with a circular cross section (cylindrical wave guide),
b) thin circular disc (plane state of stress),

c) thin circular ring,

d) thick circular ring.

Paper [3] shows the first results obtained by one of the authors of this paper by
measuring longitudinal and transversal vibrations of a cylindrical rod with a finite
cross section. The experimental results proved to be in a very good agreement with
theoretical values of frequencies obtained through the Pochhammer solution, see
[5], namely for the first dispersion branch. The measurements proved that at least
a part of frequencies of longitudinal vibrations, pertaining to the second and third
dispersion branch, can be determined through the given apparatus.

The frequencies of extensional vibrations of a thin disc are presented in papers
[2] and [5].

Frequency equations of extensional vibrations of a thin and thick ring are presented
in [1]. These equations follow from the simple theory of a curved bar, which was
improved through corrections concerning rotation of elements of the ring, its
transverse cross section, and the shear due to a shear force.
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The block diagram of the measuring arrangement is shown in Fig. 1, where

5 6 7
8 9
Fig. 1.

1 — source of pulses of the force

2 — measured model

3 — acceleration pickup KD 91/118

4 — pickup amplifier RFT SDM 132

5 — digital recorder of short-run processes B & K 7502
6 — narrow-band frequency analyzer B & K 2031

7 — level recorder B & K 2305

8 — interface

9 — tape punch B & K 6301.

A particular description of the electroacoustic impulse method of measuring is
given in [4], and also in [3]. The stress pulse in the measured model was aroused by
an impact of a steel ball suspended on a thin thread. As a result of the fact that no
considerable fall of amplitudes of natural frequencies was encountered in measured
spectra, the stress pulse generated in this way can be supposed to converge to the
Dirac pulse. Through the agency of the stress pulse the measured models theoretically
experience vibrations at all frequencies. The time response of the stress pulse was
trapped by the acceleration pickup, and processed by the frequency analyzer. In this
way the spectrum of all frequencies of the model was obtained. All the spectra
presented in this paper were obtained by the linear averaging of 32 spectra of the
respective measuring. By averaging the results, disturbing influences were suppressed.
By carrying out the measurement the frequency analyzer was equipped with a weight
filtr with a linear characteristic (“FLAT”). The accuracy of measuring the frequencies
on a spectral analyzer is given by the frequency range being chosen on the analyzer.
By measuring the cylindrical wave guide, this accuracy was 75 Hz, 62-5 Hz and 50 Hz.
By measuring a thin disc and a thin ring the frequencies were red with the accuracy
50 Hz. By measuring a thick ring the accuracy ranged from 125 Hz to 50 Hz.
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2. NATURAL FREQUENCIES OF A CYLINDRICAL WAVE GUIDE

2.1 Longitudinal vibrations

In a rod of finite length L, the measured value of frequency of longitudinal vibra-
tions, f,, allows the phase velocity of the wave, ¢, to be obtained from the formula

= L
n 2

(2-1) Cn

where 7 is an integer (n = 1, 2, 3, ...). Hence, it is evident that from this formula we
get a number of discrete values of velocity c,. In a thin bar, when a wave length
A = 2L[n is by one order greater than its transverse dimension, the velocity ¢ = ¢,
is steady, independent of frequency. In a bar, whose transverse dimension cannot
be neglected, velocity ¢ is a function of frequency, and geometrical dispersion is
encountered.

The result of measuring is represented by a spectrum of natural longitudinal vibra-
tions of the wave guide (Fig. 2.)*). Employing the frequency analyzer, we can from

Broel & Kjwr  Time Function Start:

Full ScaleLevet:

F.S. Frequencymmm
Woeighting: FLAT
Average Mode:
No. of Spectra 32 |
Comments_______

Fig . 2.

the spectrum determine natural frequencies of the wave guide, f,, and then, from
formula (2-1), we can calculate velocities c,. Now we carry out the scaling of velocities

*) It is impossible to arouse the stress disturbance such which only allows a rotationally
symmetrical longitudinal vibration to be generated. Transversal waves too are always propagating
in the model, hence, the response in Fig. 2 and next figures shows very small amplitudes of these
parasitic oscillations too.
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¢, and frequencies f,, employing the formulae

(2'2) an = ﬁ ’

Co

a.f, a
2-3 = LA
23 =t o

and then we can plot the measured points of dispersion curve. In relations (2-2),
(2-3), the subscript N stands for the scaling values, a is radius of the rod. The di-
mensions of the rod are as follows: L = 2-165 m; @d = 2a = 0-29 m.

The measuring of points of the basic branch of the dispersion curve was relatively
simple. From the measured spectrum of longitudinal oscillations (see, for instance,
Fig. 2) we select the natural frequencies f, with greatest amplitudes, then, on substitu-

Table 1
n /. [Hz] ¢, [m/s) S Nn CNn
1 1200 5200 0-033 1-000
2 2 400 5200 0-067 1-:000
3 3 600 5200 0-100 1-000
4 4750 5140 0-134 0-990
5 5 850 5070 0-167 0-975
6 6 900 4 980 0-201 0-958
7 7 850 4 860 0-234 0-935
8 8 700 4710 0-268 0-906
9 9 450 4 550 0-301 0-875
10 10 050 4350 0-335 0-838
11 10 600 4 170 0-368 0-803
12 11 050 3990 0-402 0-767
13 11 500 3 830 0-435 0-737
14 11950 3700 0-469 0-711
15 12 400 3 580 0-502 0-689
16 12 900 3 490 0:536 0-672
17 13 350 3 400 0-569 0-654
18 13 850 3330 0-603 0-641
19 14 350 3270 0-636 0-629
20 14 900 3230 0-670 0-621
21 15 400 3180 0-703 0-611
22 16 000 3150 0-737 0-606
23 16 600 3130 0-770 0-601
24 17 200 3 100 0-804 0-597
25 17 850 3090 0-837 0-595
26 18 500 3080 0-871 0-593
27 19 200 3 080 0-904 0-593
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ting these frequencies in relation (2-1) we get velocities c,, and eventually, we carry
out the scaling through relations (2-2) and (2-3). The values obtained by measuring
and calculation are presented in Tab. I. Tab. II shows the comparison of the points
of the basic branch of the dispersion curve, obtained by measuring a circular rod
of a finite length, with the points calculated by the Pochhammer equation (see, for
instance, equation (2-1) in paper [3]), which defines the dispersion response in circular
rods of infinite length. For the scaling frequency fy,, the scaling velocity cy, is
presented, calculated from the measured values, and, further, Tab. 2 shows the theo-
retical value of the scaling velocity cy,y, calculated from the Pochhammer equation
for the same value of fy,. The measured rod being made of structural carbon steel.
The Poisson ratio of the steel is supposed to be equal to 0-29. This value was sub-
stituted into the Pochhammer equation. Moreover, Tab. II shows an absolute value
of a percentage difference 4 between cy, and cy,.

Table IT

n an CNn CNnT IAI [%]
1 0-033 1-000 0-999 01
2 0-067 1-:000 0-996 0-4
3 0-100 1-000 0-991 0-9
4 0-134 0-990 0-983 07
5 0-167 0-975 0-972 03
6 0-201 0-958 0-956 0-2
7 0-234 0-935 0-934 0-1
8 0-268 0-906 0-906 0-0
9 0:301 0-875 0-871 0-5
10 0-335 0-838 0-834 0-5
11 0-368 0-803 0-798 0-6
12 0-402 0-767 0-764 04
13 0-435 0-737 0:734 0-4
14 0469 0-711 0-709 03
15 0-502 0-689 0-688 0-1
16 0-536 0-672 0-670 03
17 0-569 0-654 0-655 02
18 0-603 0-641 0-643 0-3
19 0-636 0-629 0-633 06
20 0-670 0-621 0-624 05
21 0-703 0-611 0-617 1-0
22 0-737 0-606 0-611 0-8
23 0:770 0-601 0-606 0-8
24 0-804 0-597 0-601 0-7
25 0-837 0-595 0-598 0-5
26 0-871 0:593 0-595 0-3
27 0-904 0-593 0-592 0-2
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The boundary conditions on the faces of a rod of finite length are somewhat
different from those in cross sections of an infinite rod. However, the results of
measuring show that the difference is small, and it quickly dies away in a short

distance from the faces of the rod.

The measuring of points of the second and third branch of the dispersion curve
was somewhat more difficult. This is due to the fact that for the rod in question the
respective natural frequencies are encountered in the frequency band above 10 kHz.
In this band the rod experiences a great number of natural frequencies whose ampli-
tudes are relatively small (see Fig. 2). Hence, it was necessary to select those natural
frequencies f,, referring to the points of the second and third branch of the dispersion

Table 111
n f, [Hz] ¢, [m/s] SNn CNn
1 13 200 57 160 0-033 11-002
2 12 900 27930 0-067 5376
3 12 700 18 330 0-100 3-528
4 12 600 13 640 0-134 2-626
5 12 550 10910 0-167 2-100
6 12 600 9090 0-201 1-750
7 12 875 7960 0-234 1-533
8 13200 7 140 0-268 1-375
9 13 812 6 650 0-301 1-:279
10 14 600 6320 0-335 1-217
11 15 500 6 100 0-368 1-174
12 16 350 5900 0-402 1-136
13 17 250 5750 0-435 1-106
14 18 400 5690 0-469 1-095
15 19 400 5 600 0-502 1-078
16 20 400 5520 0-536 1-063
17 21375 5440 0-569 1-048
18 22 125 5320 0-603 1-025
19 22 875 5210 0-636 1-003
20 23 600 5110 0:670 0-984
21 24 250 5000 0-703 0-962
22 24 900 4 900 0-737 0-943
23 25 500 4 800 0-770 0-924
24 26 000 4 690 0-804 0-903
25 26 625 4 610 0-837 0-888
26 21 125 4 520 0-871 0-870
27 27 700 4 440 0-904 0-855
28 28 250 4370 0-938 0-841
29 28 875 4310 0-971 0-830
30 29 375 4240 1-005 0-816
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curve. The selection was carried out in such a way that all natural frequencies obtained
by measuring were stored in memory of the computer. For the cylindrical wave guide
in question the natural frequencies had to be read also in the band above 20 kHz as,
below this frequency, only a relatively small number of the respective frequencies
was encountered. Accordingly, for some measurements, the frequency range of the
spectral analyzer B & K 2031 was extended through the digital recorder of short-run
processes B & K 7502. This approach made it possible to read the natural frequencies
of a cylindrical wave guide up to the value 32 kHz. Further, we inserted the exact
points of the second and third branch of the dispersion curve into the memory of the
computer. These points were obtained by solving the Pochhammer equation for a rod
of an infinite length. Among these exact points, the computer approximated the
dispersion curves via short line segments, and calculated theoretical natural fre-
quencies f, referring to the second and third dispersion branch. From the set of the
measured frequencies the computer selected those converging to the theoretical
values.

Table IV
n fn [Hz] ¢, [m/s] S s Chn
1 14 200 61490 0-033 11-836
2 14 800 32040 0-067 6168
3 15 200 21940 0-100 4:223
4 15 900 17210 0-134 3-313
5 16 600 14 380 0-167 2767
6 17 200 12 410 0-201 2:389
7 17 875 11 060 0-234 2-128
8 18 500 10010 0-268 1.927
9 19250 9260 0-301 1-783
10 20 000 8 660 0335 1-667
11 20 800 8 190 0-368 1-576
12 21 625 7 800 0-402 1-502
13 22 562 7510 0-435 1-447
14 23 200 7180 0-469 1-381
15 23 875 6 890 0-502 1327
16 24 875 6730 0-536 1296
17 25 500 6 500 0-569 1-250
18 26 125 6 280 0-603 1210
19 27125 6 180 0636 1-190
20 28 250 6120 0-670 11177
21 29 100 6 000 0-703 1-155
22 30 000 5900 0-737 11137
23 31 000 5 840 0770 1-123
24 32 000 5770 0-804 1111
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The measured values of eigenfrequencies f,, and the respective calculated phase
velocities ¢, for the second branch of the dispersion curve are presented in Tab. IIL
Further, the table shows the scaling frequencies fy, and scaling velocites cy, calculated

from relations (2-3) and (2-2).

Tab. IV shows the measured eigenfrequencies f,, calculated phase velocities c,,
scaling frequencies fy,, and scaling velocities cy, for the third branch of the dispersion

curve of longitudinal waves.

The absolute values of the percentage differences 4 between the points of the second
and third branch of the dispersion curve obtained by measuring a rod of finite
length, and the points referring to the theoretical curve of the second and third
dispersion branch of a rod of an infinite length, are set up in Tab. V and Tab. VL

Table V

n SNn CNn CNnT |4] [%]
1 0-033 11-002 11-075 0-7
2 0-067 5376 5-401 05
3 0-100 3-528 3-531 0-1
4 0-134 2:626 2:615 0-4
5 0-167 2:100 2-083 0-4
6 0-201 1-750 1-746 02
7 0-234 1-533 1-523 0-7
8 0-268 1-375 1-375 0-0
9 0-301 1-279 1-277 0-2
10 0:335 1-217 1-213 0-3
11 0-368 1-174 1-170 0-3
12 0-402 1-136 1-139 0-3
13 0-435 1-106 1-116 09
14 0-469 1-095 1-097 02
15 0-502 1-078 1-079 0-1
16 0-536 1-:063 1-061 0-2
17 0-569 1-048 1-043 0-5
18 0-603 1-025 1-024 0-1
19 0-636 1-003 1-004 0-1
20 0670 0-984 0-984 0-0
21 0-703 0-962 0-963 0-1
22 0-737 0-943 0-942 0-1
23 0-770 0-924 0923 0-1
24 0-804 0-903 0-904 01
25 0-837 0-888 0-886 02
26 0-871 0-870 0-870 00
27 0-904 0-855 0-854 0-1
28 0-938 0-841 0-840 0-1
29 0971 0-830 0-826 0-5
30 1-:005 0-816 0-814 02
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Table VI

n an CNn CNnT IAI (%]
1 0-033 11-836 11:816 0-2
2 0-067 6-168 6122 0-8
3 0-100 4223 4-239 0-4
4 0-134 3-313 3-306 02
5 0-167 2-767 2-751 06
6 0-201 2-389 2-387 0-1
7 0-234 2-128 2-129 00
8 0-268 1-927 1-937 05
9 0-301 1-783 1-789 0-3

10 0-335 1-667 1-672 03

11 0-368 1-576 1-576 0-0

12 0-402 1:502 1-496 04

13 0-435 1-447 1-429 1-3

14 0-469 1-381 1-372 0-7

15 0-502 1-327 1-322 04

16 0-536 1:296 1-281 1-2

17 0-569 1-250 1-245 0-4

18 0-603 1-210 1-216 05

19 0:636 1-190 1-192 0-2

20 0-670 1-177 1-172 0-4

21 0-703 1-155 1-154 0-1

22 0-737 1-137 1-139 0-2

23 0-770 1-123 1-125 0-2

24 0-804 1-111 1-111 0-0

Here, for the scaling frequency fy,, the scaling velocity cy, calculated from the
measured values is presented. Further, the theoretical value of the scaled velocity cy,r
is set up, calculated from the Pochhammer equation for the same value fy,.

Clc,
1 6,5

5,5-
4,5-
35-
2,5-
15+
05 ; , . . ,

0 02 04 06 a8 10
—— OLA.

Fig. 3a.
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Fig. 3a shows the second and third dispersion branch obtained by measuring.
As a result of a finite length of the rod it is impossible to measure arbitrary values
of points on dispersion curves, only a discrete set of points may be obtained. The
particular points obtained by measuring are marked by crosses in Fig. 3a. For
comparison this figure also shows the second and third branch of the dispersion
curve of a circular rod of infinite length. To avoid the coalescence of both curves, the
values are plotted only up to the value of the scaled velocity cy = ¢[c, = 65, i.e.,
the first points obtained by measuring (n = 1) are left out.

C/c,

1 151

1,34
L

0,9

0,5 T T T T T

0 02 04 06 ng 10
—— G
Fig. 3b.

Fig. 3b shows all three dispersion branches. For comparison, this figure also shows
the first three branches of dispersion curves of a rod of infinite length with circular
cross section. For a good overview, Fig. 3b shows the scaling velocities only up to
the value cy = ¢/co = 1°5.

2.2 Flexural vibrations

In practical measurements the attention was only focused on the points of the
basic branch of the dispersion curve of flexural waves (transversal vibrations). The
procedure of the measuring and the processing of the results are similar to those
used by measuring longitudinal waves. In view of the fact that a great number of
natural frequencies with various amplitudes were obtained, it was necessary to deter-
mine the respective frequencies pertaining to the basic dispersion branch (similarly
as in the case of the second and third branch of longitudinal waves) by employing
a special selecting method.

In paper [4] it was proved that for a rod of infinite length the dependence of velocity
¢, upon the value a/A, can be approximated by the relation

(2-4) s A1 = 1By,
Co

which can very well substitute the curve obtained by the Pochhammer solution. For
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1 = 029, the value of A = 0-5736; B = 0-1581. A maximum error of the approxima-
tion is 0-97%.

Employing relation (2-4), we calculated the theoretical values of flexural frequen-
cies f, which are, to compare the results, given in Tab. VIL.

Table VII

b

J, [Hz]

132
697
1870
3677
6039
8 834
11 949
15 358
19 075

—
(=R NEN Y. NV S SURE N

The real flexural frequencies f, obtained by measuring, and the respective phase
velocities ¢, calculated from these frequencies are presented in Tab. VIII. Further,

Table VIII

n J»[HZ] SNn ¢, [m/s] CNn
1 5 0-007 110 0-021
2 130 0-034 560 0-107
3 700 0-084 1210 0-234
4 1900 0-150 1840 0-353
5 3 600 0-234 2230 0430
6 5850 0-336 2520 0-486
7 8 800 0-457 2790 0-537
8 11 850 0-597 2 880 0554
9 15 350 0-756 2940 0-566

10 19 700 0-934 3 060 0-589

this table sets up the scaling frequencies fy, and scaling velocities ¢y, obtained by
relations (2-3), (2-2).

Further (similarly as in Section 2.1), we carried out the comparison between the
measured points of the basic branch of the dispersion curve of flexural waves in
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a rod of finite length, and the points obtained by the Pochhammer equation for
flexural waves in a rod of infinite length.

The absolute values of percentage differences 4 between the points obtained by
measuring the dispersion curve of flexural waves, and the points obtained theoretically
are set up in Tab. IX. For the scaling frequencies fy,, the table shows the scaling
velocities cy, calculated from the values obtained by measuring, and the theoretical
values of scaling velocities cy,r, obtained by the Pochhammer equation for flexural
waves (see, for instance, egs. (1.6)—(4) in paper [4]). The symbol 4 stands for the
percentage differences between the values cy, and cy,r.

Table IX
n SFNn CNn CNnT 4] [%]
1 0-007 0-021 0-021 0-0
2 0-034 0-107 0-104 2-8
3 0-084 0-234 0-235 0-4
4 0-150 0-353 0-355 06
5 0-234 0-430 0-443 3-0
6 0-336 0-486 0-501 3-1
7 0-457 0-537 0-537 0-0
8 0597 0-554 0-558 07
9 0:756 0-566 0:570 2:5
10 0-934 0-589 0-575 2-4
Clec.
0,74
0,6
0,5
0,4~
0,31
0,24
0,1+
0 - T ] T T T
0 02 04 06 038 10
i Q/A
Fig. 4.

The values set up in Tab. IX are plotted in Fig. 4. The figure shows the particular
points obtained by measuring the basic branch of the dispersion curve of flexural
waves. Fig. 4 also shows the basic branch of the dispersion curve (solid line curve)
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obtained by the Pochhammer equation for flexural waves (z = 0-29) in a rod of
infinite length. The differences being very small, it is evident that the influence of
boundary conditions is not considerable.

3. NATURAL FREQUENCIES OF EXTENSIONAL VIBRATIONALS OF A THIN DISC

The disc of diameter d, = 400 mm, thickness h = 12 mm, made of structural
carbon steel (u = 0-29) was supported by three steel balls of diameter d = 11 mm.
The balls were embedded in a plate, made of a plastic, in such a way that the positions
of particular balls created an equilateral triangle, whose centrum was exactly below
the centre of gravity of the disc (see Fig. 5). The embedding of the balls is shown in
Fig. 6.

90°

$13.

7
$53

4dy

Pt mmy

Fig. 6.

To study the influence of the embedding of the balls upon the spectrum of radial
oscillations of the disc, three different magnitudes of the equilateral triangle of the
embedding were used, namely three different diameters of the circumcircle of the
equilateral triangle (d, = 20 mm, 100 mm, 160 mm) were chosen. It was found out
that the magnitude of the diametre d, can only influence the damping of amplitudes
of disc oscillations in time, whereas the values of frequencies remain practically
unchanged.

Radial oscillations of extensional vibrations of a thin disc studied in [2]. Paper
[4] presents the relations for calculation of natural radial frequencies of a thin disc:

(3-1) fo = ¢sBs  extensional vibration without components of cir-
™ 2mr, cumferential displacements,

(3-2) £ = 3% extensional vibration with components of circum-
™ 2nr, ferential displacements,

where c; stands for velocity of the dilatation wave in a two-dimensional continuum
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(state of plane stress, for steel c; = 5420 m/s), 7, is radius of the disc, constants
(eigenvalues) B, and o™ are given as positive roots of transcendental equations (23)
and (24) in paper [2] (see also paper [5]). The eigenvalues of the disc in question
are set up in Tab. X. The theoretical frequencies of extensional vibrations of the disc,

Table X Table XI
u=029 u=029
s 1 2 3 s 1 2 3
; 2:0425 - — 8813 - -
) 1-6248  3-5311  4-0712 7011 15236 17566
af?) 1-3974  2:5217  4-5378 6029 10880 19579
al® 2:1448  3-4669 - Sfar[Hz] 9254 14958 -
al® 227921 4-4217 - 12047 19078 -
al® 3-3989 - — 14 665 - -
{6 3-9860 — — 17 198 - -
a7 4:5619 — - 19 683 — -

obtained on substituting the values B,, «™ into relations (3-1) and (3-2), are given
in Tab. XI. As the maximum frequency range of the spectral analyzer B & K 2031
is 20 kHz, it follows from relations (3-1) and (3-2) that there is no use in considering
the constants

(3-3) B, > 4635, or o >4635.

il
Briel & Kjser  Timo Function Start; saconds End:- secondy. Not Expanded: () e
Full Scale Levet: i 1 }

F. 5. Frequency.._.
Weighting: ELAT

Aversge Mode..
No.of Spects T2
Comments:________.

] nmmnm

| Ll EMTITN
Signi e Hi 441 N 1M CHIL P
9 | IRV B9ANT HAEHIAM
20 40 L e e L T D
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The spectrum of extensional vibrations of the disc, obtained by measuring, is
shown in Fig. 7. This spectrum was obtained for d, = 20 mm (see Fig. 5).
The frequencies of the disc, f,,, obtained by measuring, are set up in Tab. XII.

Table XII
m Sm [Hz] Smr [Hz] [4] [%)
1 6 050 6 029 03
2 7 000 7011 02
3 8 800 8 813 01
4 9300 9254 (U]
5 10 900 10 880 0-2
6 12 100 12 047 0-4
7 14 700 14 665 0-2
8 14 950 14 958 01
9 15200 15 236 02
10 17 250 17 198 03
11 17 600 17 566 02
12 19 100 19 078 01
13 19 600 19 579 01
14 19750 19 683 03

The table also shows the frequencies f,; obtained by calculation (see Tab. XI),
and also the absolute values of the percentage differences 4 between theoretical and
experimental frequencies. ‘

4. EIGENFREQUENCIES OF EXTENSIONAL VIBRATIONS OF A RING

4.1 Introductory remark

Let us consider the ring shown in Fig. 8. From the viewpoint of the theory of
curved bars, this ring can be considered to be a thin ring if

(4.1) Rz10.h,
where
(42) R= D_:_d

is the medium radius of the ring.

Natural vibrations of a thin ring are treated in [1]. In general, the ring can
experience either longitudinal or flexural vibrations. The flexural vibrations have the
characteristic feature that their first natural frequency is considerably lower than that
of oscillations arousing longitudinal deformation (only radial displacements).
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Paper [6] presents the equation for calculation of angular frequencies of natural
vibrations of a thin ring. This relation only little differs (in the region of low fre-
quencies) from the well known Hoppe formulae (1874) which are as follows

2
(43) @i = (-CI—:) (n? +1)  for longitudinal vibrations,

2 /N2 n2(n2 _ 1)2
(44) Q= (C—I;’) (é) E(nz—lg for flexural vibrationsn =0, 1,2, ...,
n“ +

j is a quadratic radius of inertia of the cross section of the ring.

=
&

Fig. 8.

Paper [1] presents the derivation of natural frequencies of a thin ring via an im-
proved theory respecting rotational inertia of the element, the influence of shearing
forces and the influence of the transverse dimension of the ring (the Rayleigh cor-
rection respecting rotational inertia and the transverse dimension, the Timoshenko
correction). This improved theory results in a cubic equation for calculation of eigen-
frequencies. In view of the frequency range, which can be intercepted by the measuring
arrangement, two smallest roots are of importance for the samples under consider-
ation.

Vibrations of two different rings were investigated. The first ring was made from
structural steel (u = 0-29). Its dimensions are as follows (see Fig. 8):

Jd =280mm; D =300mm; b=h=10mm.

The mean radius of the ring R = 145 mm. With reference to eq. (4-1), this ring can

can be considered to be a thin ring.
The second ring was made from refined aloy structural steel (v = 0-30). Its di-

mensions are as follows (sec Fig. 8):
Od =494mm; @D =566mm; b=16mm; h=36mm.

The mean radius of the ring R = 265 mm. With reference to eq. (4-1), this ring can
be supposed to be a thick ring.
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The spectra of eigenfrequencies of the above rings, obtained by measuring, were
compared with theoretical spectra obtained via the following theories:

a) the frequency equation in paper [1], which results from the theory with cor-
rections,

b) the frequency equation in paper [6], which follows from the theory without
considering corrections,

c) the Hoppe formulae, see eq. (4-3), (4-4).
It ought to be remarked that all three above theories hold for vibrations of a thin
ring. Nevertheles, these theories were intentionally employed for calculation of
frequencies of thick ring too. This approach aimed at the experimental verification
of applicability of the theories to a thick ring. It will be shown that the best results
can be get through the theory with corrections.

4.2 FEigenfrequencies of a thin ring

The thin ring suspended on two threads (Fig. 9) was subjected to a mechanical
impact.

Fig. 9.

The spectrum of frequencies, obtained by measuring, is shown in Fig. 10.

The comparison of theoretical values of flexural frequencies with those obtained
experimentally is given in Tab. XIII. The number n stands for the order of the eigen-
frequency. The frequencies are non-zero for n = 2. Symbol f, refers to the values
obtained by measuring, symbol f,» stands for the values calculated via the theory
with corrections, symbol f,,, represents the frequencies obtained through the theory
without corrections, and symbol f,y states the frequencies obtained by the Hoppe
formulae. In Tab. XIII, the symbols |45|, |4y, |45] respectively stand for the absolute
values of percentage differences between the theoretical values f,p, fou, fuy and
experimental values f,.

Tab. XIV shows the comparison of experimental values of longitudinal frequencies
of the thin ring with theoretical values. The symbols used in this table are the same
as those used in Tab. XIII.
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Table XIII
n fy[Hz]  fop[Hz]  |4p|[%] fam[Hz] |4y|[%) fix[Hz]  [4y]1%]
2 300 303 1-0 304 1-3 304 1-3
3 850 855 0-6 860 1-1 861 1-3
4 1650 1629 1-3 1 649 0-1 1 650 0-0
5 2 600 2617 0-7 2 667 2:5 2 668 2:6
6 3 800 3 806 0-2 3913 2:9 3915 29
7 5200 5188 0-2 5386 35 5388 3-5
8 6 750 6752 0-0 7085 4:7 7088 4-8
9 8 500 8486 0-2 9012 57 9015 57
10 10 400 10378 0-2 11 165 69 11170 69
11 12 450 12418 0-3 13 545 81 13 551 81
12 14 650 14 593 0-4 16 152 93 16 158 9-3
13 16 950 16 894 0-3 18 985 10-7 18 993 10-8
14 19 400 19 309 0-5 22 045 12-0 22 054 12-0
Table XIV
n  f[Hz}  fip[Hz]  |4p|[%)  fuu[Hz) |4y [%]  fuy[Hz]  [4y]1%)
0 5700 5695 0-1 5 695 0-1 5 695 0-1
1 8 000 8 050 0-6 8054 0-7 8054 0-7
2 12 900 12 727 1-4 12 738 1-3 12 735 1-3
3 18 000 17997 00 18 015 01 18 010 0-1
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4.3 Eigenfrequencies of a thick ring

The thick ring was suspended on a copper wire of diameter 2 mm (see Fig. 11).

=1

Fig. 11.

The spectrum of frequencies obtained by measuring is shown in Fig. 12,
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Fig. 12.

Tab. XV gives the comparison of the experimental values of flexural frequencies

with theoretical values.
Tab. XVI refers to longitudinal frequencies of the thick ring.
The symbols used in Tabs. XV and XVI are the same as those in Tab. XIIL
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Table XV

n fHz]  foplHz]  |4p|[%]  fau[Hzl  |dy|[%] fon[Hzl  [dp] [%)

2 315 315 0-0 319 1-3 319 1-3
3 875 878 03 901 29 902 30
4 1 645 1650 0-3 1727 4-8 1729 49
5 2 600 2 604 0-2 2792 6-9 2796 7-0
6 3713 3714 0:0 4 096 9-4 4102 9-5
7 4963 4958 01 5637 12-0 5 646 12-1
8 6325 6314 0-2 7416 14-7 7 428 14-9
9 71775 7763 0-2 9432 17-6 9 448 177
10 9300 9287 01 11 685 20-4 11 705 20-6
11 10 900 10 875 0-2 14 174 231 14 200 23-2
12 12 550 12 514 03 16 901 258 16933 259
13 14 250 14 194 0-4 19 863 283 19 904 28-4
14 16 000 15908 0-6 23062 30-6 23112 30-8
15 17 750 17 648 0-6 26 497 33:0 26 557 332
16 19 950 19 411 0-7 30 166 35-2 30 241 354
Table XVI
n fiHz]  fop[Hz]  |4p|1%]  fau[Hz] |4y [%]  fow[Hzl  |4y{1%]
0 3012 3030 06 3030 0-6 3030 0-6
1 4250 4278 0-7 4285 0-8 4285 0-8
2 6 700 6761 09 6780 1.2 6775 11
3 9 600 9 558 0-4 9 592 0-1 9 582 0-2
4 12 350 12 455 08 12 509 13 12 493 1-1
5 15 400 15392 01 15472 0-5 15 450 03
6 18 350 18 346 0-0 18 458 0-6 18 431 0-4
CONCLUSION

The paper contains the continuation of the previous authors’ paper [3].

For a rod of circular cross section (cylindrical wave guide), the first three branches
of dispersion characteristic of longitudinal rotationally symmetrical waves were
obtained by measuring, including the basic branch of the dispersion characteristic
of transversal waves. The particular points obtained by measuring are in a very
good agreement with theoretical curves obtained for a rod of infinite length. Maxi-
mum errors for longitudinal and flexural waves respectively are 1-3%; and 3-1%,.
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The analysis of eigenfrequencies of extensional vibration of a thin disc confirms
correctness of the previous theories given in [2] and [5]. The maximum error between
theoretical and experimental values ammounts to 0-5%;.

The investigation of eigenfrequencies of extensional vibration of a thin ring
confirmes exactness of the previous theory given in [1]. The best coincidence of
results was obtained via the theory with corrections.

The results obtained by measuring the spectra of a thick ring show that the theory
with corrections, originally developed for a thin ring, can be with high accuracy
employed for calculations of natural spectra of a thick ring too.

The maximum errors between theoretical and experimental values attained through
the improved theory are 1-4 or 0-9% for a thin and thick ring respectively. It turns
out that the theory covers a fairly wide region, and can be, therefore, employed also
for ratia h/R > 0-1.
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