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CALIBRATION OF TRANSDUCERS FOR ACOUSTIC EMISSION

Petr Hora

An impulse method for calibration of transducers for acoustic emissions is presented. The
calibrating device and standard conic- and cylindrical transducers are described in detail. Attention
is paid also to calculating displacements on the surface of a half-space, since the calculation cannot
be avoided. For calculation of displacements in epicentrum and in its close neighbourhood by
subsurface vibration excitation, aproximation functions have been determined. These functions
approximate an exact solution with errors less than 194, and accelerate calculations considerably.
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radii of cone waveguide
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Lamé’s constant
displacement

density

Poisson’s ratio
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1. INTRODUCTION

The following calibration methods are used at present:
vibration method

is used especially for calibration of accelerometers. On a vibrating table there is
placed both the transducer to be tested and the standard transducer. The vibrating
table excited by a sine generator may cover a frequency range from 1 Hz to 100 kHz,
the practical upper limit being approximately 20 kHz (the frequency limitation is
due to mechanical resonances of the vibrating table). An output signal of the
transducer being calibrated is compared with the output signal of the standard
transducer subjected to the same load. The sensitivity is given directly in pC/g or in
mV/g.

impulse method

makes use of a stress wave excited by breaking either a glass capillary or graphite,
andfor through an impact of a small ball falling from a defined height upon the
surface of a trial medium on which is situated both the transducer being tested and
the standard transducer. This method, which affords an absolute calibration, will
be described in detail in this paper.

hydrophone method

The calibration is carried out in a great water tank on whose opposite sides are
situated a standard transmitter and a standard transducer. On measuring the trans-
mission throughout the full frequency band, the standard transducer is replaced
by the transducer being tested. The calibrating curve is obtained by comparing the
two measurements. This method necessitates preserving equivalent geometry. The
usual frequency range is from 1 kHz to 1 MHz.
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ultrasound method

is a modification of the preceding method. Here, the transmitter is directly acous-
tically connected with the transducer through the agency of a viscous medium. The

ultrasound method
random noise method

aims at simulating the signal of acoustic emission, including the conditions for
its propagation and sensing. The transducer is situated on the surface of a capacious
block of material excited by a flux of fine hard particles. The impact of the particles
generates stress waves which propagate through the material and enter the transducer.
The signal is of 2 noise nature with a wide frequency spectrum. The ouptut from the
transducer is connected to a frequency analyser. The dependence of amplitude on
frequency is then recorded in a suitable way. This method of generating impulses is
in a good agreement with real relations by acoustic emission. An individual impact
of a particle can well imitate a point source of a narrow transient impulse. The nature
of these continuous impacts is then quite random.

spark calibration method

is a modification of the preceding method. Here, short stress impulses are generated
by a pressure wave aroused by a discharge in an air spark gap. On the assumption
that surface waves entering the transducer contain all frequency components with
equal amplitudes, we can insert a narrow-band filter on the output from the transducer
and thus measure amplitudes of these components, to obtain the frequency charac-
teristic of the transducer.

It is seen that the suitableness of the above methods for calibrating transducers of
acoustic emissions is specialized. Accelerometers and conventional ultrasound exciters
and transducers are at present calibrated through proved methods. However, these
methods are not in correlation with real acoustic emission.

On comparing theoretical and practical results and respecting the regions of
applicability, the calibration procedure must satisfy the following requirements:

a) An input calibration signal must have the form of stress impulses with a small
amplitude and a short period of existence.

b) The propagation of impulses in a calibration device must be similar to propaga-
tion of signals of acoustic emission.

¢) Bond conditions of a transducer in the respective device must approximate to
real conditions in practical applications.

d) Calibration tests must yield reproducible results, and they must be exact with
an adequate and permanent tolerance.

With reference to the above requirements it is evident that optimum results by
calibrating transducers for acoustic emission may be at present achieved via the
impulse method.
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2. IMPULSE METHOD OF CALIBRATION

The principle of the impulse method consists in comparing signals obtained from
a standard reference transducer and the transducer being calibrated. The two signals
are subjected to FFT, divided by each other, and the result is multiplied by the
frequency characteristic of the reference transducer. Thus we get the frequency
characteristic of the transducer being calibrated. Signals from the transducers cor-
respond to stress waves which are excited by breaking either a glass capillary or
graphite, and/or by an impact of a small ball upon the surface of a trial medium.
The trial medium is usually represented by a steel cylinder with as great radial and
axial dimensions as possible. In this way we may ensure a sufficiently long time
interval for an undisturbed record (i.e. without rebounds) of stress waves.

The transducers and the exciting source may be situated either on one base of the
cylinder (surface excitation) or on opposite bases (subsurface excitation) (Fig. 1).
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Fig. 1. Scheme of calibration for a) surface- and b) subsurface excitation.

The latter method doesn’t suffer from the aperture phenomenon, however, in this
case, the intensity level is one order of magnitude smaller, which results in worse
noise relations.

As the standard transducer we usually use a capacity transducer or a transducer
with a conic piezoceramic. These transducers are very sensitive, and they are dis-
tinguished by an even characteristic over a wide frequency range (from tens of kHz
to units of MHz). A detailed description of the conic transducer is given in para-
graph 4.

Since the calculation of frequency characteristic of the transducer being calibrated
necessitates the knowledge of the reference transducer characteristic, we will show
the measuring method for the reference conic transducer.

The method of calibrating the standard transducer consists in calculating time
dependences of an axial component of displacement vector on the surface of a half
space by both surface- and subsurface excitation through a step function of force.
Then, by exciting the half-space (represented by a spacious steel cylinder) through
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a step force we can compare the signal from a conic transducer with theoretical
values, to obtain the frequency characteristic of the reference conic transducer.
Again, we can use either a surface- or subsurface excitation (Fig. 2). The results of
the calibration are presented in paragraph 6.
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Fig. 2. Scheme of calibration of a reference transducer for a) surface- and b) subsurface excitations
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3. DISPLACEMENTS ON SURFACE OF HALF-SPACE

As mentioned above, the calibration of a standard transducer necessitates cal-
culating time dependences of an axial component of displacement vector on the
surface of a half-space by both surface- and subsurface excitation through a step
function of force. Below, therefore, we will give the results of these calculations.

3.1. The case of surface excitation through a step function of force

The situation is illustrated in Fig. 3. The time dependence of an axial component
of the vector of displacement I, on the surface of a half-space (z = 0) is shown in
Fig. 4, notably, the scaled axial component of the vector of displacement L,(t) versus
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Fig. 3. The case of surface excitation of half-space.

dimensionless time 7 is plotted, where
T = (cyfr)t
and

Lz(t) = _ﬁ)— :

R4
n2ur
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Fig. 4. Time dependence of a scaled axial component of displacement.

For the calculation we used the Pekeris solution in the closed form [8], which
was adjusted for numeric calculation by Mooney [7].

Tt is to be remarked to Fig. 4 that:
— all responses are directly proportional to the total force Z,
— the succession of arrivals of the respective waves is as follows:

i) longitudinal wave (P), ii) transversal wave (S), and iii) Rayleigh’s wave (R),
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— for v < 1/§ the value of L,(z) is zero, since the longitudinal wave propagating
at highest velocity could not arrive at the place considered,

— with increasing the value of Poisson’s ratio there increases the length of the interval
between arrival of longitudinal (t = 1/5) and transversal (r = 1) wave, whereas
the interval between arrival of transversal (z = 1) and Rayleigh’s (r = y) wave
decreases. This is due to the well-known dependence of velocities ¢, ¢, and cg
on Poisson’s ratio,

— with increasing Poisson’s ratio there increases the amplitude of the pulse at the
instant of arrival of a longitudinal wave (only for ¢ < 0-35) and length of this
pulse, whereas the steepness of the pulse decreases. The effect of decreasing the
steepness would be more pronounced in a real- than in dimensionless time,

— the arrival of a transversal wave (t = 1) is represented only by the change in the
steepness of the response (step in derivative). This change in the steepness is
more pronounced at higher values of Poisson’s ratio (below, we will show that
the change in the steepness of responses obtained experimentally can be only
hardly identified),

— with increasing Poisson’s ratio the width of Rayleigh’s pulse becomes considerably
smaller,

— the constant level of L,(r), which follows after Rayleigh’s pulse, decreases if the
value of Poisson’s ratio grows,

— all curves are running through a common point T = 1-05. From the physical
angle this point is the point of arrival of Rayleigh’s wave in the limit case of an
ideal fluid.

3.2. The case of subsurface excitation through a step function of force

The situation is illustrated in Fig. 5. The time dependence of an axial component
of the vector of displacement I, on the surface of a half-space (z = 0) is shown in
Fig. 6, notably, the scaled axial component of the vector of displacement L.(7)
versus dimensionless time 7 is plotted for various values of ratio r/h at ¢ = 0-25,

L
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Fig, 5. The case of subsurface excitation of half-space.
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where = (cz/R) ‘)

L(7) = L(7)
8%z
[ﬂzﬂR]
R = J(r + 1.

The calculation was carried out via the Pekeris solution in the closed form[9, 10].
This solution holds for a half-space characterized by elastic constants 4 and u. The
constants are supposed to be identical (1 = p = = 3; hence, Poisson’s body is in
question).

It is to be remarked to Fig. 6 that:

— P-wave starts with a finite displacement whose direction is the same as that of the
force in the source. If the force in a subsurface source is oriented upwards, the
initial displacements of P-wave would be directed upwards too. It should be
remarked that with decreasing the depth of the source k (or with increasing r) the
initial displacement of P-wave inclines to zero.

— the character of S-wave is in the case r < h/\/2 quite different from the case
when r > h/\/2. In the former case the arrival of S-wave is distinguished by
a finite step in the displacement, whereas in the latter case the S-wave is distin-
guished by an infinite step in the displacement which is oriented oppositely than
in the former case. It is evident that if r < h[\/2 the arrival of S-wave is distin-
guished by discontinuity of the displacement directed downwards. At the arrival
of S-wave the step in the vertical component is directed in the same direction as
in the case of P-wave. If r > h/,/2 the S-wave is distinguished by an infinite step
in the displacement which is oriented oppositely than in the case r < h/\/2. An
infinite step doesn’t occur in the case of a surface pulse (h = 0), as can be seen
from Fig. 4.

— at the instant of arrival of SP-wave its amplitude is zero, which contrasts with
discontinuities occurring by arrivals of P- or S-wave. This weak start may be
referred to the fact that in terms of the ray theory [1] the SP-wave transports
no energy at its arrival. Accordingly, there appears ounly a cut occurring after
arrival of the SP-wave. The displacement following the arrival of SP-wave
is directed upwards. It should be remarked that the evident convergence of P- and
SP-period occuring at great distances in Fig. 6 is due to the existence of a dimen-
sionless time scale which is used on the axis of the independent variable. If an
absolute time scale is used, and if great distances are in question, the time delay
of SP-wave behind P-wave approximates to the limit value

(hlez) y2/3
— Rayleigh’s wave doesn’t exist in the range r < h/\/2. At r = 5h Rayleigh’s wave
starts appearing, while at r = 10h it can be clearly seen. At h = 0 the case is

and
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identical with that described in the preceding paragraph (see Fig. 4). The amplitude
of Rayleigh’s waves in Fig. 6 increases with increasing the distance. This is due
to the fact that for scaling the factor 1/R is used, while the surface waves are dying
away with 1/\/R. Really, we can find out that amplitudes of maximum values
of L,, which occur at the arrival of Rayleigh’s wave, become, with increasing the
distance, greater as \/R. The curves shown in Fig. 6, which indicate the change
in character of displacements, occurring if r/h increases, may be also considered
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to illustrate the effect of decreasing depth & at constant value of r. If the source
moves towards the surface, there appear high-frequency components of Rayleigh’s
waves with relatively greater amplitudes. As a result of using the scaled time 7
instead of absolute time ¢, the increase in amplitudes is somewhat blown up in
Fig. 6.

— since the loading force follows Heaviside’s unit function, we get for ¢ — oo a finite
displacement.
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Fig. 6. Time dependence of scaled axial component of displacement.

3.3. Approximation of solution for r < h/,/2

The calculation by [9, 10] is much time consuming. Accordingly, we tried to find
a suitable approximation of relations for L.(r). This approximation was supposed
only for solutions at r < h/\/2, since this interval covers the range of practical
applications, where the case r = 0 (measuring in epicentrum) occurs in the majority
of cases.
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A typical curve of L,(t) at r < h/,/2 is shown in Fig. 7. The approximation was
divided into two steps. First, we approximated a part of the response in a dimen-
sionless time interval {1/,/3; 1). For this interval the function ;L}(z) was approxi-
mated in the form

(1) = —Ae* — L

05
LZ(T) B
(-]
0.0

-1.0
0.0

Fig. 7. Typical course L,(7) for r < h//2.

where 4, «, and Lare real numbers, and 4, « > 0. To obtain constants 4, « and L,
we must find three equations for these three constants, which represent the passage
of approximating function ;L}(r) through three important points:

a) point O [1//3; L.(1/{/3)],

b) point P [7; L,(r')] (the selection of ' — see below),
c) point Q [1; L(1_)],
L(1/3) = —4e’"? — L

L(r) =-Ae” —L (1)
L(l)) =—de ~—L

On subtracting the third equation from the first one, and the second equation from
the first one, we get the system of equations

L (1/\/3) — L (1 ) = _A(ea/J3 — ea)
L(1]3) — L(v) = —A(e? — &) )
On dividing these equations, we have

L(1J3) - L(1.) _ &V — e o)
L(1]y3) - L(z) &3 — &
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which allows the constantnt « to be calculated. Equation (3) is transcendental, and
it was solved via bisection (i.e., step halving method). Substituting « into equation
(2), we get constant 4, and on substituting « and A into (1), we get constant L.

Now, let us return to the selection of 7’. For t" we can successively substitute the
values from interval (1/\/ 3; 1). For all values of 7" we will calculate constants A4, o, L
and maximum deviation |L,(t) — ;Li(7)| in the given interval {1/\/3; 1). On selecting
minimum values of these maximum deviations, we will regard as finite values of
constants A4, «, L those values corresponding to this minimum maximum of deviations
of the approximated- and approximating function.

The values of constants A, o, L and the values of relative devations for various
values of r/h are listed in Tab. 1.

Table 1. Constants A4, a, L in dependence on #/h.

rlh A o L 4 [%]
0-0 0-1530111 1-7108337 —0-2363360 0-683
01 0-1492081 1-7156433 ~—0-2291425 0674
02 0-1384420 1-7267851 —0-2086799 0-260
03 01228694 1-7497802 —0-1786599 0-602
04 01039841 1-7779663 —0-1418856 0-520
05 0 0846565 1-8071838 —0-1034586 0-407
0-6 0:0663195 1-8345214 —0-0661979 0-243
07 0-0500353 1-8529602 —0-0322745 0-054

Now, we will approximate the response within the dimensionless time interval
{1; o). Here, the approximating function ;;L}(7) is assumed in the form
IILt(T) = Be—‘pt - K s
where B, B, and K are real numbers, and B, § > 0.
To obtain constants B, f and K, we must again find three equations representing
the passage of approximating function ,L%(t) through three important points:
a) point R [1; L,(1,)],
b) point S [7'; L(t')], (the selection of t' — see below)
¢) point T [o0; L,(0)],
L(1,)=Be’ —K
L(t) =Be# —K (4)
L,(0) = Be™#® — K = —-K

The third equation yields the value of constant K. On dividing the first and second
equation, we get the relation

L(.,)+K — g B1-®) 5)
L(7) + K

202



which allows constant B to be calculated

1 In L(1,)+K

P Lk

On substituting constant f into equation (4), we get constant B.

The selection of 1’ is analogous to that carried out in the preceding part. We will
successively substitute for 7’ the values from interval {1; 1-5) whose upper limit was
chosen with reference to practical measurements which do not allow to go far beyond
the value © = 1 (for greater values there appear rebounds from the walls of the trial
block). For all values 7’ we will calculate constants B, §, K and maximum deviation
|L.(r) — L%(7)| in the given interval {1; 1-5). On selecting the minimum of these
maximum deviations, we will regard as finite values of constants B, 8, K those values
corresponding to this minimum maximum of deviations of the approximated and
approximating function.

The values of constants B, 8, K and the values of relative deviations for various
values of r/h are listed in Tab. 2. From Tab. 1 and Tab. 2 it is seen that constants

Table 2. Constants B, S, K in dependence on r/h.

r/h B B K 4 1%]
0-0 5-4178353 4-8089727 06544984 0-206
01 5-7000910 4-8305700 0-6519063 0-207
02 65926408 4-8926104 0-6444292 0-204
03 84223636 5-0100552 06328820 0-201
0-4 11-8377902 5-1900530 06183882 0-197
05 21-8775353 56168730 0-6021385 0-340
06 85692129 6-7567409 0-5851986 1-027
0-7 10726:9568449 11-2532219 0-5684033 3-953

A, a, L, B, B, K are monotonous functions of ratio r/h. This fact allows us to find
simple approximations also for these functions. The approximation was carried out
via the least squares method, the approximating function being represented by the
polynoms

P(x) =i;0a,~x" , Wwhere x =rfh.

To approximate A4, «, L, K, we used the polynoms of the third degree, while for B
and B respectively the polynoms of the eighth and seventh degree have been used
since the values B and f grow very rapidly with increasing ratio r/h. The values of
coefficients of the polynoms which approximate dependences 4, o, K and B, §,K
on r/h are listed in Tab. 3 and Tab. 4.
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Table 3. Coeficients of polynoms approximating dependences of 4, «, L on r/h.

coefficient A o L
ay 0-153071466 1-711730686 — 0236399646
a; 0-000886007 —0-056858945 —0-004390876
a, —0'435356166 0-806968492 0-834623952
a, 0-320118097 —0°623369925 —0-588797609

Table 4. Coefficients of polynoms approximating dependence of B, 8, K on r/h.

coefficient B B K

ag 5-41521852¢0 4-80896930e0 0-654486469
a 8-61037755¢3 3-27977117¢0 0-003364517
a, —2-02161622e5 —7-57690498e1 —0:304874194
a; 1-72750784¢6 6-89884028e2 —0-177750512
a, —6-81450118e6 —2-99445366€3

as 1-19872070e7 6-84589597e3

ag —3-81155786e6 — 7935934833

a; —1-36377332e7 3-72389071e3

ag 1-22162426¢7

Table 5. Maximum relative deviations.

rih 4y [%] 41 [%])
00 0-855 0-189
0-1 0-308 0-149
0-2 0-340 0-246
03 0-656 1-392
0-4 0-789 3-604
0-5 0-419 7-297
0-6 0-216 12-643
07 0-312 18-994

Tab. 5 presents maximum relative deviations for individual values r/h, which have
been obtained comparing real responses L,(t) with approximating responses ;L}(7)
and IIL:(T)'
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4. CONIC TRANSDUCERS

A conic transducer is a highly sensitive wide-band device (operating up to several
MHz) for measuring a vertical component of displacement of a small area on the
surface of a body. This transducer is designed for a wide region of applications, e.g.,
for testing by means of acoustic emission, to be used as a standard transducer, and
the like. The scheme of a conic transducer is shown in Fig. 8.
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Fig. 8. Scheme of a conic transducer.

The basic characteristics of the transducer are as follows:

1) Active element made of piezoceramics is conic, its polarization is parallel with
the axis of the cone;

2) The greater base of the cone with scalded silver or gold electrode is sticked
(or soldered) on a relatively great cylindrical block made usually from brass;

3) The smaller base of the cone with scalded silver or gold electrode is connected
through the medium of as thin binding layer as possible with the part of relatively
large surface on which is measured the vertical component of displacement;

4) No-load voltage is measured between the brass cylindrical block and the surface.

Now we are going to determine an equivalent diagram of the conic transducer,
and to calculate its frequency characteristic from geometrical dimensions and
material constants of an active element and terminal impedances.

By designing an equivalent diagram we will use as a basis an impedance matrix
of a conic divergent waveguide (see Fig. 9) in solid phase [6, 11]

0cS, (ﬁg_(k_l) + i) ; —oc \/(SlSz)——l—

2 j jkx, j sin (kI)
" 1 cotg (kl) 1
¢ J(S,S;)) ——— ; —ges, (o) b
0c\/(5:5:) j sin (ki) ¢ 2( j jkxz)
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This impedance matrix was derived on the assumption that the sections perpendicular
to the axis of waveguide remain by deformation planar, the axial stress is uniformly
distributed all over the surface, and radial displacements can be neglected. Comparing

Fig. 9. Conic divergent waveguide.

Fig. 10. T-element,

the above relation with the matrix of T-element shown in Fig. 10,

we get for Z,, Zy and Z. the following relations

tg (kl 1
Z, = gcS, [CO g.( ) + - ! ], (6)
J

jkxy  jsin(kl)

Z, = ocS, [cotg.(kl) 1 1/r ] (7)

j jkx, B j sin (kI)

Zc = gc \/(Slsz)m ’ ®)
where r = x,/x,.
If the T-element is supplemented by Mason’s model, we get an equivalent diagram
of an peizoelectric element whose shape is conic (see Fig. 11).
Transferring the electric part to the mechanical side and on supplementing the
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diagram by source impedance Z; and load impedance Z, (see Norton’s theorem —
velocity short-circuited + parallel impedance Z,), we get an equivalent diagram
of a conic transducer, indicated in Fig. 12. It should be remarked that v, v; and v,

A B
Z
c
1 I—co/k2
Ukbi co/kg

T

Fig. 12, Equivalent diagram of conic transducer.

are loop velocities (not branch velocities), for instance, the velocity on Z¢ is v, — v,.
For the diagram shown in Fig. 12 it holds

vy — vy, = vF,

where

T (Za+ Zy + Zo)(Zp + 2, + Z¢) — 22

and

Ukg

On substituting for v4-v, from eguation (9) into eguation (11), we obtain

Z(Zs + Z,)

Ul - Uz
joColk?’

©)

(10)

(11)
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Further, substituting ¢ = vf/jw and —p;; = k,/c,, we get

Ul¢ = —pssF,

which is the resultant relation for sensitivity of a conic transducer.

The value of p;; lies between h;5 (disc) and g3;/s3; (rod).
hs is piezoelectric constant (for calculation we used the value 21-5. 108 V/m).
g33 is piezoelectric constant (for calculation we used the value 24-9 . 1073 Vm/N),
and
533 is the yielding constant at D = 0 (for calculation we used the value 9-46 . 10~ 12
m?/N).

Substituting relations (6) and (8) into relation (10) for individual impedances,
we get the numerator of fraction F (see (10))

N =z [22 +i ( L 7=t e (kl))] (12)

r sin (kI) rkl

and denominator of fraction F

. 2 . 2
D=1+4z7z, + -1 (-1 cotg (kl) +

r(k1)? rkl
+ilz, (= 1_ cotg (kl) } — z, r—1 + cotg (kI) } | . (13)
rkl kl
Here z, and z, are scaled specific impedances Z,/ocS; and Z,[gcS, (the scaling is

carried out to gc of the cone!).
In the case of the cylindrical transducer, r = 1, we get for F

Fe z4[z, + itg (klf2)] (14)
1 + zyz, — i(z, + z,) cotg (kI)

If kI is equal to odd multiples 7, both the numerator and denominator in equation
(14) are infinit, but the ratio is finite; if, however, kI is equal to even multiples =, i.e.,
if length I is equal to integral multiple of wave length, the denominator is infinit
for arbitrary values z, and z,, hence, both F and sensitivity U/¢ are nil. In the case
of cone, the expression 1/(r sin (kl)) for r > 1 preserves the finite value of fraction F
in equation (12). Instrad of nil, in this case, there exist only minimums in the charac-
teristic. This is the reason why a conic transducer yields a suitably even wide-band
characteristic (which cannot be achieved with a cylindrical transducer).

Now it remains to find the values of impedances Z, and Z,. In practical applications
the signals detected by a conic transducer are so short that both the body considered
and the end block may be supposed to be half-spaces. The problem of the impedance
in a half-space, considered in a circular area with radius a on the surface of a half-
space, was solved in [2]. Here, the input impedance was approximated by the formula

Z=&, (15)
g +ib
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where

g =1+ 2/x,(1 = 3y,/x;) sin (kax,) _
ka
6/x%(1 — 2 1 — cos (kax,) y
- /xl( - yl/xl)-—-—(;a—)‘;—‘ ( )
and
1 cos (kax
b= 2x,(2 — 3yy/x) — + 2/x,(1 — 3y,/x,) cos (kax;) _
ka ka
sin (kax
— 6fx2(1 - 29, /x) 752)2_) , )
where
k=2
€1

Here S is the circular area with radius a, and y,, x, are dimensionless parameters
obeying equations

16 (1 — o)
W= o
3 (1 — 20)
X, =2 21—=2\/<2————(1_o-)>y.
Cr 1 - 20

The values of y, x4, y, for various values of Poisson’s ratio are listed in Tab. 6.
Fig. 13 illustrates the real and imaginary part of specific impedance 1/(g + ib)
scaled to oc,, of the material of a half-space (steel).

ka[-]
Fig. ]3. Dependence of scaled specific impedance 1/(g + ib) on ka.
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Table 6. Values y, x,, y, in dependence on o.

o ? X1 Y1
0-01 1-14158 3-24530 1-69783
0-03 1-13655 3-26554 1-69928
0-05 1-13161 3-28839 1-70237
0-07 1-12677 3-31415 170733
0-09 112202 3-34319 1-71442
0-11 1-11738 3-37592 172399
013 1-11283 341284 1-73642
0-15 1-10838 3-45456 1-75222
0-17 1-10403 3-50181 1-77199
0-19 1-09978 3-55549 1-79650
0-21 1-09564 3-61670 1-82673
0-23 1-09160 368687 1-86396
0-25 1-08766 3-76778 1-90986
0-27 1-08383 3-86179 1-9666
0-29 1-08010 3:97203 203759
0-31 1-07647 4-10278 2-12698
0-33 1-:07294 4-26007 224140
0-35 1-06950 4-45270 2:39086
0-37 1-06617 4-69413 2-59153
0-39 1-06293 5-00616 2-87135
0-41 1-05878 1-05979 3-28307
0:43 1-05674 6-03098 3-93977
0-45 1-05379 6-99002 513540
0-47 1-05092 8-83438 7-94784
0-49 1-04814 14-97038 22:07797

5
=
jse)
o
o.
ey
-5 1
o
2
Q -tof
—15-
-20

k 1T-]

Fig. 14. Dependences of modul |F| on k! for a) cylindric transducer (a; = a, = 1:5 mm and
/=1 mm) b) conic transducer (¢; = 0-5mm, @, = 24 mm and / = 1-5 mm).
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On substituting the impedances from equations (15) to (17) into equations (12)
and (13), we can calculate fraction F in equations (9) and (10). In the first approxi-
mation the velocity ¢ in the conic part may be considered as velocity in a thin rod,
¢o, Which is independent of frequency. Fig. 14 shows the dependences of modul |F |
on ki, referring to both a cylindrical transducer (¢, = a, = I'5mmand I = 1 mm)
and conic transducer (¢, = 0-5mm, a, = 224 mmand [l = 1-5 mm). For a cylindrical
transducer the characteristic goes to zero at kI = 2=, 4=, etc., which was expected,
while for a conic transducer at identical values kI there are minimums on the charac-
teristic.

To simulate the behaviour of a real transducer as closely as possible, the velocities
¢, must be replaced by some more realistic entity. In the case of a cylindrical trans-
ducer we may use the well-known Puchhammer dispersion relation for phase velocity
in cylindric rod in dependence on frequency. For a conic transducer there exists
no exact correction. For our calculations we used the approximation of dispersion

0.75 1

0.50 ; d ; d ;
0.0 0.2 0.4 0.6 0.8 1.0 1.2

a/A[-]

Fig. 15. Approximation of dispersion dependence of phase velocity on wave length by [3].

dependence (Fig. 15) presented in [3].
< 0:06860" %1%

b (2 1 + 0-144351°1372
4/ 0-144 + 0-5017¢

IR

+ 0:6124 — 0-14320

where ¢ is Poisson’s ratio, a is rod diameter, and A is wave length.

Fig. 16 illustrates the dependence of modul |F | on kl for a cylindrical transducer
(a; = a, = 1'5mm and [ = 1 mm), obtained

a) without using the exact Pochhammer solution for a cylindrical rod, and

b) using this solution.
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Now we will discuss the influence of the material of the load- and source im-
pedances. For a cylindrical transducer the material of the load impedance is as
important as the material of the source, whereas for a conic transducer with, for
instance, r = a,/a, = 5 (the ratio of areas is 25) the load impedance Z, is relatively

5
-
@
ke
—
O--
[y
> 3
L
Q -4
.—15-
-20

k [-

s

Fig. 16. Dependence of modul {F| on k! for cylindrical transducer a) without correction b) with
Pochhammer’s velocity correction.

animportant. Fig. 17a shows the dependence of modul ]F [ on k!l of a cylindrical
transducer for two various materials of the end block, while the material of the
source remains in both the cases unchanged; Fig. 17b indicates the same situation
for a conic transducer with » = 5. It is seen that the material of the end block of
a cylindrical transducer playes an important role, whereas by using a conic transducer
its role is unimportant. This is further advantage of conic transducer. Fig. 17¢c shows
the characteristics of a conic transducer with the same brass end block but different
materials of the source. As expected, the difference in characteristics confirms the
necessity of calibrating on the respective material on which will be the transducer

used.
5. MEASURING APPARATUS

The scheme of the apparatus for calibration of reference conic transducer for both
the surface- and subsurface excitation is shown in Figs. 18a and 18b. The supporting
arrangement is shown in Fig. 20.

The device for measuring the force aroused by breaking a glass capillary is situated
below the block F. The knowledge of this force is necessary for absolute calibration
of transducers. The device consists of a tensiometric bridge connected through
a bonding agent with a duralumin intermediate element, further of a balance equip-
ment and voltmeter. A detailed scheme of block F is shown in Fig. 19.
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‘Two semicondutor tensiometers (15, T,) are connected through a bonding agent
with a thin rod of the intermediate element. This rod serves for breaking the glass

(48]

i BRASS=STEEL

20 log |F]

[d8]

20 log |F]

(8]

20 log IFl

0 2n 4'n G'n
kol -]
Fig. 17a. Dependence of modul |F| on kI of cylindrical transducer tor two various matetials
' of the end block.
Fig. 17b. Dependence of modul |F| on ki of a conic transducer (» = 5) for two various materials
of the end block.

Fig. 17¢. Dependence of modul [F| on k! of a conic transducer (» = 5) for two various materials
of the source and for an end block made of brass.
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capillary. Two further semiconductor tensiometers (T;, T;) serving for temperature
compensation are connected through a bonding agent with the enlarged part of the

intermediate element.

VOLTMETER

VOLTMETER

////

TRIGGER

COMPUTER

DIGITAL

5
77

SCILLOSCO

Fig. 18a. Scheme of the device for calibration of conic transducer by surface excitation.

COMPUTER

TRIGGE

DIGITAL
OSCILLOSCOPE

Fig, 18b. Scheme of the device for calibration of conic transducer by subsurface excitation.
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Fig, 19. Detailed scheme of block F




The bridge is supplied from 1:5V source. The output voltage of the bridge, at-
taining units of mV, is measured by a KIESLEY voltmeter. Using rheostat R,
the current in tensiometric bridge is first adjusted to 5 mA, and the bridge is in no
load operation balanced through potencipmeter P, to zero. Then the bridge is cali-
brated by loading the device by forces whose magnitude is known. The calibration
is repeated after finishing the measuring, to verify stability of parameters of the
bridge.

The capillaries used for generating the exciting force in the form of a step function
have principal importance for the function of calibrating device. We used capillaries
made of silica glass, with outside diameter 100 pm and inside diameter 50 pm.
It is to be remarked that capillaries with an outside diameter 1 mm, used in first
experiments, proved to be unfitting, since the breaking process was not abrupt.

A steel block in the form of a cylinder with diameter 195 mm and height 140 mm
has been used for callibration. The two bases of the steel cylinder were smoothed
to a high gloss. The roughness of the surface was measured using a TAYLOR
HOBSON apparatus in laboratories of the faculty of mechanical engineering CVUT.
The results of measuring are listed in Tab. 7 where S is the selective decisive deviation.

Table 7. Parameters of roughness of two bases of trial steel cylinder.

UPPER BASE

S X X max X min

R, [ym] 0-004 0-086 0-090 0-083

LOWER BASE
S X’ Xmax Xmin

R, [um] 0-027 0111 0-141 0-087

The cylinder was situated on three steel balls embeded in steel cylinders of the
supporting device shown in Fig. 20.

The signal from a conic transducer enters a digital oscilloscope (KIKUSUI
7201A). The starting signal was taken from a classical resonant transducer of acoustic
emission, sitauted in proximity of the exciting source. Both the signal from a conic
transducer and starting signal were scaled by frequency 20 MHz, and stored in the
memory of the oscilloscope. On storing several records, the records were carried
over a digit transfer bus HP-IB into computer PC AT for further processing.

6. RESULTS OF CALIBRATION

The signal from a conic transducer composed of 1024 values (length of the record
51-2 ps with scaling step 0-05 ps) was processed in the following way:
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a) selection of an interval of length 25:6 ps (512 samples), inside which is the
record influenced through no rebounds from the walls of the block,

b) inside the above interval selection of only each other sample because the

Fig. 20. Supporting device.

sampling step is unnecessarily small (high frequencies are considerably influenced
through the noise, and we are interested in the range of frequency characteristic only
up to 1 MHz); hence, the length of the record is 256 us (256 samples),

¢) calculation of a theoretical course of the displacement on the surface of the
calibration block with equivalent time parameters,

d) execution FFT of signals obtained sub b) and c),

e) division of these spectra.

Figs 21, 22 and 23 show the results of calibration — frequency characteristics of
a conic- and cylindrical transducer by calibrating through a surface- and subsurface
excitation. The upper parts of the figures show the course of the signal, obtained by
measurements, the middle parts indicate the theoretical course of displacement, and
the lower parts illustrate the course of frequency characteristic of the used transducer,
expressed in dB referred to V/um.
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Fig. 21 refers to calibration of a conic transducer with surface excitation.
Fig. 22 refers to calibration of a conic transducer with subsurface excitation.

Fig. 23 refers to calibration of a cylindrical transducer with subsurface excitation.

U75

ImVI1 ]

25 1

0 25
t [us]

S0

{dB] 4o
(V/um)

30

0 02 0.4 0.6 0.8 1
f [MHz]

Fig. 21. Caracteristics of conic transducer by surface calibration.
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Fig. 22, Characteristics of conic transducer by subsurface calibration.
7. CONCLUSION
The paper presents results of numeric calculations of time dependences of a vertical
component of displacement on the surface of a half-space by a surface- and subsurface

excitation through a step function of force. We succeeded in determining explicit
functions which can with sufficientaccuracy approximatetime dependences of a vertical
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Fig. 23. Characteristics of cylindric transducer by subsurface calibration.

component of displacement on the surface of a half-space by a subsurface excitation.
A maximum deviation of the approximating function from an exact course is for
r/h = 0 only 0-86%. This accuracy is sufficient for practical calculations. The ap-
proximation allows the solution of complex integrals to be avoided, which brings
considerable reduction of computation without decreasing the accuracy of solution.

Further, the paper presents analysis of a standard transducer of acoustic emission
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(cylindrical transducer), and shows calibration of a conic- and cylindrical transducer.
In frequency range from 0 to 1 MHz the two transducers have a uniform frequency
characteristic with an average sensitivity 40 dB [V/um].

The method described in the paper makes it possible to carry out an absolute
calibration of transducers for acoustic emission, and thus it allows a quantitative
comparison of transducers both imported and made in inland laboratories. The
calibration of transducers is especially important for locating the sources of acoustic
emission, where the knowledge of sensitivity of individual transducers is necessary.
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