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Abstract

This paper report on a technique for the analysis of propagating multimode
signals. The method involves a 2-D Fourier transformation of the time history of
the waves received at a series of equally spaced positions along the propagation
path. The output of the transform being presented using an isometric projection
which gives a 3-D view of the wave number dispersion curves. The time history of
the waves was obtained by the commercial finite element (FE) code, MARC. The
results of numerical studies and the dispersion curves of Lamb waves propagating in
the 2.0-mm-thick steel plate are presented. The results are in good agreement with
analytical predictions and show the effectiveness of using the 2-D Fourier transform
method to identify and measure the amplitudes of individual Lamb modes.
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1 Introduction

The application of the conventional ultrasonic methods, such as pulse-echo, has been
limited to testing relatively simple geometries or interrogating the region in the immediate
vicinity of the transducer. A new ultrasonic methodology uses guided waves to examine
structural components. The advantages of this technique include: its ability to test the
entire structure in a single measurement; and its capability to test inaccessible regions of
complex components.

The propagation of guided waves in a complex structure is a complicated process that
is difficult to understand and interpret. The current research develops the mechanics
fundamentals that models this propagation.
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One approach to modeling guided wave propagation phenomena is to analytically solve the
governing differential equations of motion and their associated boundary conditions. This
procedure already has been done for simple geometries and perfect specimens without
defects (see [Gra75] and [Mik78]). However, these equations become intractable for more
complicated geometries or for a non-perfect specimen.

Another approach to this problem is a numerical solution. There are three main numerical
methods which can be used for this problem: The finite difference method (FDM), the
finite element method (FEM) or the boundary element method (BEM). The FDM was
the first numerical method to be applied to investigate the propagation of stress waves.
The BEM has the advantage that just the surface of the specimen needs to be discretized;
the numerical problem itself is therefore reduced by one dimension. On the other hand,
the primary advantage of the FEM is that there are numerous commercial FEM codes
available, thus eliminating any need to develop actual code.

The objective of this research is to compare known analytical solution of guided wave
propagating problem in a thick plate with its numerically obtained solution.

2 The FEM numerical modeling

Temporal and spatial resolution of the finite element model is critical for the convergence of
these numerical results. Choosing an adequate integration time step, ∆t, is very important
for the accuracy of the solution. In general, the accuracy of the model can be increased
with increasingly smaller integration time steps. With time steps that are too long,
the high frequency components are not resolved accurately enough. On the other hand,
too small time steps are a waste of calculation time. Therefore, a compromise must be
found. According to our experiences, this compromis is 20 points per cycle of the highest
frequency component; this gives accurate solutions in an efficient manner. This rule is
expressed as:

∆t =
1

20fmax
, (1)

where fmax is the highest frequency of interest. By determining the highest frequency for
waves propagating through the structure¸ and using Eq. (1), a time step,∆t, is calculated
that is small enough to model the temporal behavior of the propagation. If the input
function gets close to a step function, the ratio given in Eq. (1) might not provide sufficient
temporal resolution. In some cases, this ratio has to be increased up to ten times. Also,
the needed time step can alternatively be related to the time the fastest possible wave
needs to propagate between successive nodes in the mesh.

The size of the elements are chosen in a manner so that the propagating waves are spa-
tially resolved. According to our experiences, it is needed that more than 20 nodes per
wavelength be used. This rule can be expressed as:

le =
λmin

20
, (2)

where le is the element length and λmin is the shortest wavelength of interest. If highly
accurate numerical results are needed, Eq. (2) might not be sufficient, and a higher level
of discretization might be required.



Eqs. (1) and (2) show that for high frequency wave propagation problems, enormous
computer resources are needed. Computing such problems leads to high values of fmax,
and also small values of λmin, which means a very dense mesh and very small integration
time steps.

In order to understand the behavior of the FEM applied to the solution of guided wave
problems, a relatively simple geometry is considered: a 2 mm thick and 100 mm long steel
plate as in [MJQ99]. This geometry has the advantage of a known analytical solution (the
Rayleigh-Lamb equation, see following section). The FEM program used for this work
was MARC ver. K7.3.2 with pre- and post-processor MENTAT ver. 3.2.0. that was
installed on workstation SGI OCTANE (processor R 10000, 195 MHz, 256 MB RAM,
4+9 GB HD). The FE model formulated to solve this configuration with the material
properties and the resulting wave speeds are summarized in Table 1. The upper left
corner of this plate, which is modeled with square shaped elements (le = 0.1 mm), is
loaded with a displacement boundary condition in the x - and y-directions. Figure 1
shows the applied displacements on the different nodes in the upper left corner of the
plate. The time function of these displacements is triangle pulse; width of 0.2 µs. This
load has no practical meaning, but its frequency content is appropriate for exciting high
frequency waves. The goal of this model is to show dispersion effects up to a frequency,
f , of 5 MHz. According to the recommendations, this transient problem is solved with
a integration time step, ∆t = 10−8 s. The central difference approximation was used to
obtain the time marching solution.

Geometric properties Material properties
Width 2 [mm] Young’s modulus 2.1011 [Pa]
Length 100 [mm] Poisson’s number 0.29 [-]
Element type 4-node, plane stress Density 7850 [kg/m3]
Element length 0.1 [mm] Compresion wave 5778 [m/s]
Elements 20000 [-] Shear wave 3142 [m/s]
Nodes 21021 [-] Rayleigh wave 2909 [m/s]

Table 1: FEM model and material properties

le

Figure 1: The displacement direction of applied load.



3 Dispersion curves

In the analysis that follows, the material is assumed to be linear elastic, isotropic, homo-
geneous, nonpiezoelectric, and nonabsorbing. Assuming a harmonic wave propagating in
a plate with the coordinate system shown in Figure 2, the displacement on the surface,
u(x, t), may be described by a general analytic expression given by Brekhovskikh [Bre60]
as,

u (x, t) = A (ω) ei(ωt−kx−θ) , (3)

where A(ω) is a frequency-dependent amplitude constant, ω = 2πf is the angular fre-
quency, the wave number k = ω/c, c is the phase velocity, and θ denotes the phase.

Lamb waves are two-dimensional propagating vibrations in free plates, with displacements
that may be symmetric (symmetric modes) or antisymmetric (antisymetric modes) with
respect to the middle of the plate, and are eigensolutions of characteristic equations, hence
the term free or normals modes. The velocities of all Lamb waves are dispersive and in
any plate of thickness, 2d, at a particular frequency, f , there will be a finite number
of propagating modes, which may be determined from the number of real roots of the
Rayleigh-Lamb equation. The phase velocities of Lamb waves as a function of the wave
number may be obtained by solving the following transcendental equations:

tan 2π
λ
d
√

(c/c2)2 − 1

tan 2π
λ
d
√

(c/c1)2 − 1
+

4

√[
(c/c1)2 − 1

] [
(c/c2)2 − 1

]
[
2− (c/c2)2

]2

±1

= 0 . (4)

The +1 and -1 signs relate to symmetric and antisymmetric Lamb waves, respectively,
and c1 and c2 are the bulk longitudinal and shear waves velocities, respectively. The
group velocity, cg = ∂ω/∂k, may be calculated once the phase velocity as a function of
the wavelength is known. Figure 3 shows the predicted dispersion curves for the first ten
symmetric and antisymmetric Lamb waves. Figure 3a) and b) shows the dispersion curves
evaluated by Eq. (4). Figure 3d) shows the dispersion curves of Lamb waves propagating
in 2.0-mm-thick steel plate, where c1 = 5778 m/s and c2 = 3142 m/s.
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Figure 2: Schematic representation of the plate geometry and coordinate system used.
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Figure 3: Lamb wave dispersion curves.

4 A two-dimensional spectral method

The key problem associated with the quantitative measurement of the characteristics of
propagating Lamb waves is that more than one mode can exist at any given frequency.
The 2-D FFT method described in [AC91] is an extension of the one-dimensional phase
spectrum method developed by Sachse and Pao [SP78] for the measurement of the velocity
of stress waves.

Propagating Lamb waves are sinusoidal in both the frequency and spatial domains, as can
be seen from Eq. (3). Therefore, a temporal Fourier transform may be carried out to go
from the time to frequency domain, then a spatial Fourier transform may be carried out
to go to the frequency-wave-number domain, where the amplitudes and wave numbers of
individual modes may be measured.

Applying spatial Fourier methods in practice to data gained experimentally or numerically
requires us to carry out a two-dimensional Fourier transform of Eq. (3) giving



H (k, f) =
∫ +∞

−∞

∫ +∞

−∞
u (x, t) e−i(kx+ωt)dxdt . (5)

The discrete two-dimensional Fourier transform may be defined in a similar way to the
one-dimensional DFT. The result of this transformation will be a two-dimensional array
of amplitudes at discrete frequencies and wave numbers. As in the one-dimensional case,
aliasing must be avoided by sampling the data at a sufficiently high frequency in time
and wave number in space. Usually the signal will be not periodic within the temporal
and spatial sampling windows and leakage will occur. Window functions such as the
Hann window may be used to reduce this leakage, and zeros may be padded to the end
of the signal to enable the frequency and wave number of the maximum amplitude to be
determined more accurately.

The algorithm:

1. Create the array (in column order) from experimentally or numerically gained the
time histories of the waves received at a series of equally spaced positions along the
propagation path.

2. Carry out a temporal Fourier transform of each column to obtain a frequency spec-
trum for each position. At the stage, an array with the spectral information for
each position in its respective column is obtained.

3. Carry out a spatial Fourier transform of each row formed by the components at a
given frequency to obtain the amplitude-wave-number-frequency information.

For demonstration, only the x displacements at nodes on the upper surface of the plate
are considered for the 2D-FFT. The spatial and temporal sampling rate for the 2D-FFT
must be chosen high enough to avoid aliasing for the frequency and wave number range
under consideration. Since the upper frequency limit under consideration is 5 MHz, a
sampling rate of ∆T = 10−7 s is used. From a FEM point of view, the element length
le = 0.1 mm leads to accurate results for λ > λmin = 2 mm [see Eq. (2)]. This results in
a maximum value for 1/λ = 500 m−1. Therefore a spatial sampling step of ∆x = 0.5 mm
is used. This means that only solutions of every fifth surface node are needed for the
2D-FFT. In oder to get a signal without reflections from the right end of the plate¸the
time signal is windowed (Hann window) with a cut-off time of 17 µs. This cut-off time
corresponds to the time a longitudinal wave needs to travel from one end of the plate to
the other. The solution for times larger then 17 µs are ignored and replaced by zero in
order to increase the frequency resolution of the time FFT (zero padding).

Figure 4 shows the pseudocolor plot of 1/λ−f−spectrum. It can be seen clearly from this
figure that only certain 1/λ− f−combinations have meaningful amplitudes; these values
are solutions to Eq. (4). The exact solutions of Eq. (4) are plotted as solid lines. Note
that there are also some spurious peaks caused by data sampling and numerical errors.

For this FEM model, the recommended ratio λ/le = 20 is reached for 1/λ = 500 m−1.
The fact that there is good agreement even for higher values of 1/λ leads to the conclusion
that this wavelength limit is not that critical. However, the ratio between the integration
time step, ∆t, and the frequency, fmax, is much more critical; the numerical solutions
get worse, the closer the ratio 1/(∆Tfmax) gets to the recommended value of 20. In
summary, this model of a plate shows that a commercial FEM can be used to model the
dispersive nature of guided waves.
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Figure 4: The pseudocolor plot of 1/λ− f−spectrum.

5 Conclusion

This research clearly illustrates the effectiveness of using the FEM to model 2D guided
wave propagation. This research establishes the foundation mechanics to numerically solve
guided wave propagation in complex structures and uses the powerful post-processing
capabilities of a commercial FEM code to study and interpret guided wave propagation
phenomena.

An investigation into the influence of the two most important FEM parameters, the mesh
density (element length) and the time step size between solution points (integration time
step), is completed by studying a problem where a wall established analytical solution is
available, a thick plate. The FEM solution converges for certain values of element length
and integration time step. This optimization is critical in order to avoid unnecessarily
high hardware requirements and enormous total calculation times. The highest wave
frequency affects the integration time step while the shortest wavelength influences the
element length. The numerical results are in complete agreement with the analytical
solution.

An additional advantage of the FEM model is that the numerical results can be elegantly



presented using the post-processing, graphical capabilities inherent to the program. For
example, a snapshot of the displacement field or a color plot of the stress distributions
can give new insights into wave propagation phenomena.
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